Multi-particle interactions in hadronic transport approaches

  • The topic of this thesis is the theoretical description of the hadron gas stages in heavy-ion collisions. The overall addressed question hereby is: How does the hadronic medium evolve i.e. what are the relevant microscopic reaction mechanisms and the properties of the involved degrees of freedom? The main goal is to address this question specifically for hadronic multi-particle interactions. For this goal, the hadronic transport approach SMASH is extended with stochastic rates, which allow to include detailed balance fulfilling multi-particle reactions in the approach. Three types of reactions are newly-accounted for: 3-to-1, 3-to-2 and 5-to-2 reactions. After extensive verifications of the stochastic rates approach, they are used to study the effect of multi-particle interactions, particularly in afterburner calculations. These studies follow complementary results for the dilepton and strangeness production with only binary reactions, which show that hadronic transport approaches are capable of describing observables when employed for the entire evolution of low-energy heavy-ion collisions. This is illustrated by the agreement of dilepton and strangeness production for smaller systems with SMASH calculations. It is, in particular, possible to match the measured strangeness production of phi and Xi hadrons via additional heavy nucleon resonance decay channels. For larger systems or higher energies, hadronic transport cascade calculations with vacuum resonance properties can point to medium effects. This is demonstrated extensively for the dilepton emission in comparisons to the full set of HADES dielectron data. The dilepton invariant mass spectra are sensitive to a medium modification of the vector meson spectral function for large collision systems already at low beam energies. The sensitivity to medium modifications is mapped out in detail by comparisons to a coarse-graining approach, which employs medium-modified spectral functions and is based on the same evolution. The theoretical foundation of stochastic rates are collision probabilities derived from the Boltzmann equation's collision term with the assumption of a constant matrix element. This derivation is presented in a comprehensive and pedagogical fashion. The derived collision probabilities are employed for a stochastic collision criterion and various detailed-balance fulfilling multi-particle reactions: the mesonic Dalitz decay back-reaction (3-to-1), the deuteron catalysis (3-to-2) and the proton-antiproton annihilation back-reaction (5-to-2). The introduced stochastic rates approach is extensively verified by studies of the numerical stability and comparisons to previous results and analytic expectations. The stochastic rates results agree perfectly with the respective analytic results. Physically, multi-particle reactions are demonstrated to be significant for different observables, most notably the yield of the partaking particles, even in the late dilute stage of heavy-ion reactions. They lead to a faster equilibration of the system than equivalent binary multi-step treatments. The difference in equilibration consequently influences the yield in afterburner calculations. Interestingly, the interpretation of results is not dependent on employing multi-particle or multi-step treatments, which a posteriori validates the latter. As the first test case of multi-particle reactions in heavy-ion reactions, the mesonic 3-to-1 Dalitz decay is found to be dominated by the omega Dalitz decay back-reaction. While the effect on the medium is found to be negligible overall, the regeneration is found to be sizable: up to a quarter of Dalitz decays are regenerated. Non-equilibrium rescattering effects are shown to be relevant for late collision stages for two particle species: deuteron and protons. In both cases, the relevant rescatterings involve multiple particles. The deuteron pion and nucleon catalysis reactions equilibrate quickly in the afterburner stage at intermediate energies. The constant formation and destruction keeps the yield constant and microscopically explains the "snowballs in hell"-paradox. The yield is also generated with no d present at early times, which explains why coalescence models can also match the multiplicity. New is the study of the 5-body back-reaction of proton-antiproton annihilations. This work marks the first realization of microscopic 5-body reactions in a transport approach to fulfill detailed balance for such reactions. A sizable regeneration due to the back-reaction of up to half of the proton-antiproton pairs lost due to annihilations is found. Consequently, both annihilation and regeneration in the late non-equilibrium stage are shown to have a significant effect on the p yield.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jan StaudenmaierORCiDGND
URN:urn:nbn:de:hebis:30:3-635060
DOI:https://doi.org/10.21248/gups.63506
Place of publication:Frankfurt am Main
Referee:Hannah ElfnerORCiDGND, Hendrik van HeesORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2021/10/26
Year of first Publication:2021
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/10/19
Release Date:2021/11/18
Page Number:210
HeBIS-PPN:487820517
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht