### Refine

#### Language

- English (10)

#### Has Fulltext

- yes (10)

#### Is part of the Bibliography

- no (10)

#### Keywords

- Kollisionen schwerer Ionen (4)
- heavy ion collisions (4)
- Hadron (3)
- Strahl (3)
- jet (3)
- Energie (2)
- Gluon (2)
- LHC (2)
- QCD (2)
- Quanten Chromodynamik (2)

#### Institute

- Physik (10)

The extend to which geometrical effects contribute to the production and suppression of the J/psi and qq minijet pairs in general is investigated for high energy heavy ion collisions at SPS, RHIC and LHC energies. For the energy range under investigation, the geometrical e ects referred to are shadowing and anti-shadowing, respectively. Due to those effects, the parton distributions in nuclei deviate from the naive extrapolation from the free nucleon result; fA 6= AfN. The strength of the shadowing/anti-shadowing e ect increases with the mass number. Therefore it is interesting to see the di erence between cross sections for e.g. S+U vs. Pb+Pb at SPS. The recent NA50 results for the survival probability of produced J/psi s has attracted great attention and are often interpreted as a signature of a quark gluon plasma. This publication will present a fresh look on hard QCD e ects for the charmonium production level. It is shown that the apparent suppression of J/psi s must also be linked to the production process. Due to the uncertainty in the shadowing of gluons the suppression of charmonium states might not give reli- able information on a created plasma phase at the collider energies soon available. The consequences of shadowing e ects for the xF distribution of J/psi s at s = 20 GeV, s = 200 GeV and s = 6 TeV are calculated for some relevant combinations of nuclei, as well as the pT distribution of minijets at midrapidity for Nf = 4 in the final state.

We calculate the shadowing of sea quarks and gluons and show that the shadowing of gluons is not simply given by the sea quark shadowing, especially at small x. The calculations are done in the lab frame approach by using the generalized vector meson dominance model. Here the virtual photon turns into a hadronic fluctuation long before the nucleus. The subsequent coherent interaction with more than one nucleon in the nucleus leads to the depletion sigma(gamma* A) < A sigma( gamma*N) known as shadowing. A comparison of the shadowing of quarks to E665 data for 40Ca and 207Pb shows good agreement.

The transverse momentum distribution of prompt photons coming from the very early phase of ultrarelativistic heavy ion collisions for the RHIC and LHC energies is calculated by means of perturbative QCD. We calculate the single photon cross section (A + B -> gamma + X) by taking into account the partonic sub processes q + q -> gamma + g and q + g -> gamma + q as well as the Bremsstrahlung corrections to those processes. We choose a lower momentum cut-off k0 = 2 GeV separating the soft physics from perturbative QCD. We compare the results for those primary collisions with the photons produced in reactions of the thermalized secondary particles, which are calculated within scaling hydrodynamics. The QCD processes are taken in leading order. Nuclear shadowing corrections, which alter the involved nuclear structure functions are explicitly taken into account and compared to unshadowed results. Employing the GRV parton distribution parametrizations we find that at RHIC prompt QCD-photons dominate over the thermal radiation down to transverse momenta kT ≈ 2 GeV. At LHC, however, thermal radiation from the QGP dominates for photon transverse momenta kT ≤ 5 GeV, if nuclear shadowing effects on prompt photon production are taken into account.

A study of secondary Drell-Yan production in nuclear collisions is presented for SPS energies. In addition to the lepton pairs produced in the initial collisions of the projectile and target nucleons, we consider the potentially high dilepton yield from hard valence antiquarks in produced mesons and antibaryons. We calculate the secondary Drell-Yan contributions taking the collision spectrum of hadrons from the microscopic model URQMD. The con- tributions from meson-baryon interactions, small in hadron-nucleus interac- tions, are found to be substantial in nucleus-nucleus collisions at low dilepton masses. Preresonance collisions of partons may further increase the yields.

We calculate the yields of a variety of hadrons for RHIC and LHC energies assuming thermodynamical equilibration of the produced minijets, and using as input results from pQCD for the energy densities at midrapidity. In the calculation of the production of partons and of transverse energy one has to account for nuclear shadowing. By using two parametrizations for the gluon shadowing one derives energy densities di ering strongly in magnitude. In this publication we link those perturbatively calculated energy densities of partons via entropy conservation in an ideal fluid to the hadron multiplicities at chemical freeze-out.

We calculate the yields of pions, kaons, and Æ-mesons for RHIC and LHC energies assuming thermodynamical equilibration of the produced minijets, and using as input results from pQCD for the energy densities at midrapidity. In the calculation of the production of partons and of transverse energy one has to account for nuclear shadowing. By using two parametrizations for the gluon shadowing one derives energy densities differing strongly in magnitude. In this publication we link those perturbatively calculated energy densities of partons via entropy conservation in an ideal fluid to the hadron multiplicities at chemical freeze-out.

We calculate the shadowing of sea quarks and gluons and show that the shadowing of gluons is not simply given by the sea quark shadowing, especially at small x. The calculations are done in the lab frame approach by using the generalized vector meson dominance model. Here the virtual photon turns into a hadronic fluctuation long before the nucleus. The subsequent coherent interaction with more than one nucleon in the nucleus leads to the depletion sigma(gamma*A )< A*sigma(gamma * N) known as shadowing. A comparison of the shadowing of quarks to E665 data for 40Ca and 207Pb shows good agreement.

We calculate the initial non-equilibrium conditions from perturbative QCD (pQCD) within Glauber multiple scattering theory for s = 200 AGeV and s = 5.5 ATeV. At the soon available collider energies one will particularly test the small x region of the parton distributions entering the cross sections. Therefore shadowing effects, previously more or less unimportant, will lead to new e ects on variables such as particle multiplicities dN/dy, transverse energy production d T /dy, and the initial temperature Ti. In this paper we will have a closer look on the effects of shadowing by employing di erent parametrizations for the shadowing effect for valence quarks, sea quarks and gluons. Since the cross sections at midrapidity are dominated by processes involving gluons the amount of their depletion is particularly important. We will therefore have a closer look on the results for dN/dy, d ¯E T /dy, and Ti by using two different gluon shadowing ratios, di ering strongly in size. As a matter of fact, the calculated quantities di er significantly.

Nonequilibrium models (three-fluid hydrodynamics, UrQMD, and quark molecular dynamics) are used to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions from the SPS via RHIC to LHC. It is demonstrated that these models - although they do treat the most interesting early phase of the collisions quite differently (thermalizing QGP vs. coherent color fields with virtual particles) -- all yield a reasonable agreement with a large variety of the available heavy ion data. Hadron/hyperon yields, including J/Psi meson production/suppression, strange matter formation, dileptons, and directed flow (bounce-off and squeeze-out) are investigated. Observations of interesting phenomena in dense matter are reported. However, we emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data. The role of future experiments with the STAR and ALICE detectors is pointed out.