Refine
Year of publication
Document Type
- Preprint (27)
- Article (6)
- Conference Proceeding (1)
Language
- English (34)
Has Fulltext
- yes (34)
Is part of the Bibliography
- no (34)
Keywords
- heavy ion collisions (13)
- Kollisionen schwerer Ionen (11)
- Quark-Gluon-Plasma (5)
- MEMOs (4)
- quark-gluon-plasma (4)
- Drell-Yan (3)
- QGP (3)
- Quark Gluon Plasma (3)
- Ultrarelativistic Quantum Molecular Dynamics (3)
- UrQMD (3)
Institute
We demonstrate that the creation of strange matter is conceivable in the midrapidity region of heavy ion collisions at Brookhaven RHIC and CERN LHC. A finite net-baryon density, abundant (anti)strangeness production, as well as strong net-baryon and net-strangeness fluctuations, provide suitable initial conditions for the formation of strangelets or metastable exotic multistrange ( baryonic) objects. Even at very high initial entropy per baryon SyAinit ¯ 500 and low initial baryon numbers of Ainit B ¯ 30 a quark-gluon-plasma droplet can immediately charge up with strangeness and accumulate net-baryon number. PACS numbers: 25.75.Dw, 12.38.Mh, 24.85.+
The microscopic phasespace approach URQMD is used to investigate the stopping power and particle production in heavy systems at SPS and RHIC energies. We find no gap in the baryon rapidity distribution even at RHIC. For CERN energies URQMD shows a pile up of baryons and a supression of multi-nucleon clusters at midrapidity.
The extension of the Periodic System into hitherto unexplored domains - anti- matter and hypermatter - is discussed. Starting from an analysis of hyperon and single hypernuclear properties we investigate the structure of multi-hyperon objects (MEMOs) using an extended relativistic meson field theory. These are contrasted with multi-strange quark states (strangelets). Their production mechanism is stud- ied for relativistic collisions of heavy ions from present day experiments at AGS and SPS to future opportunities at RHIC and LHC. It is pointed out that abso- lutely stable hypermatter is unlikely to be produced in heavy ion collisions. New attention should be focused on short lived metastable hyperclusters ( / 10 10s) and on intensity interferometry of multi-strange-baryon correlations.
We discuss the new data for the production of the psi meson in pA collisions at 450 GeV at CERNSPS (of the NA50-collaboration) [1]. We extract from the CERN data sigma(psi'N) 8 mb under the assumption that the psi is produced as a result of the space-time evolution of a point-like c¯c pair which expands with time to the full size of the charmonium state. In the analysis we assume the existence of a relationship between the distribution of color in a hadron and the cross section of its interaction with a nucleon. However, our result is rather sensitive to the pattern of the expansion of the wave packet and significantly larger values of sigma(psi'N)are not ruled out by the data. We show that recent CERN data confirm the suggestion of ref. [2] that color fluctuations of the strengths in charmonium-nucleon interaction are the major source of suppression of the J/psi yield as observed at CERN in both pA and AA collisions.
Nonequilibrium models (three-fluid hydrodynamics, UrQMD, and quark molecular dynamics) are used to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions from the SPS via RHIC to LHC. It is demonstrated that these models - although they do treat the most interesting early phase of the collisions quite differently (thermalizing QGP vs. coherent color fields with virtual particles) -- all yield a reasonable agreement with a large variety of the available heavy ion data. Hadron/hyperon yields, including J/Psi meson production/suppression, strange matter formation, dileptons, and directed flow (bounce-off and squeeze-out) are investigated. Observations of interesting phenomena in dense matter are reported. However, we emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data. The role of future experiments with the STAR and ALICE detectors is pointed out.
Noneequilibrium models (three-fluid hydrodynamics and UrQMD) use to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that these two models - although they do treat the most interesting early phase of the collisions quite differently(thermalizing QGP vs. coherent color fields with virtual particles) - both yields a reasonable agreement with a large variety of the available heavy ion data.
Microscopic calculations of central collisions between heavy nuclei are used to study fragment production and the creation of collective flow. It is shown that the final phase space distributions are compatible with the expectations from a thermally equilibrated source, which in addition exhibits a collective transverse expansion. However, the microscopic analyses of the transient states in the reaction stages of highest density and during the expansion show that the system does not reach global equilibrium. Even if a considerable amount of equilibration is assumed, the connection of the measurable final state to the macroscopic parameters, e.g. the temperature, of the transient "equilibrium" state remains ambiguous.
Ratios of hadronic abundances are analyzed for pp and nucleus-nucleus collisions at sqrt(s)=20 GeV using the microscopic transport model UrQMD. Secondary interactions significantly change the primordial hadronic cocktail of the system. A comparison to data shows a strong dependence on rapidity. Without assuming thermal and chemical equilibrium, predicted hadron yields and ratios agree with many of the data, the few observed discrepancies are discussed.
We study the thermodynamic properties of infinite nuclear matter with the Ultrarelativistic Quantum Molecular Dynamics (URQMD), a semiclassical transport model, running in a box with periodic boundary conditions. It appears that the energy density rises faster than T4 at high temperatures of T approx. 200 - 300 MeV. This indicates an increase in the number of degrees of freedom. Moreover, We have calculated direct photon production in Pb+Pb collisions at 160 GeV/u within this model. The direct photon slope from the microscopic calculation equals that from a hydrodynamical calculation without a phase transition in the equation of state of the photon source.