Refine
Year of publication
Document Type
- Article (109)
- Preprint (45)
- Contribution to a Periodical (1)
- Part of Periodical (1)
Has Fulltext
- yes (156)
Is part of the Bibliography
- no (156)
Keywords
- LHC (8)
- ALICE (3)
- ALICE experiment (3)
- Hadron-Hadron Scattering (3)
- pp collisions (3)
- Beauty production (2)
- Diagnostik (2)
- Endothelial cells (2)
- Früherkennung (2)
- Heavy Ions (2)
Institute
Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes.
The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability.
Ziele: Das Ziel dieser offiziellen Leitlinie, die von der Deutschen Gesellschaft für Gynäkologie und Geburtshilfe (DGGG) und der Deutschen Krebsgesellschaft (DKG) publiziert und koordiniert wurde, ist es, die Früherkennung, Diagnostik, Therapie und Nachsorge des Mammakarzinoms zu optimieren.
Methoden: Der Aktualisierungsprozess der S3-Leitlinie aus 2012 basierte zum einen auf der Adaptation identifizierter Quellleitlinien und zum anderen auf Evidenzübersichten, die nach Entwicklung von PICO-(Patients/Interventions/Control/Outcome-)Fragen, systematischer Recherche in Literaturdatenbanken sowie Selektion und Bewertung der gefundenen Literatur angefertigt wurden. In den interdisziplinären Arbeitsgruppen wurden auf dieser Grundlage Vorschläge für Empfehlungen und Statements erarbeitet, die im Rahmen von strukturierten Konsensusverfahren modifiziert und graduiert wurden.
Empfehlungen: Der Teil 1 dieser Kurzversion der Leitlinie zeigt Empfehlungen zur Früherkennung, Diagnostik und Nachsorge des Mammakarzinoms: Der Stellenwert des Mammografie-Screenings wird in der aktualisierten Leitlinienversion bestätigt und bildet damit die Grundlage der Früherkennung. Neben den konventionellen Methoden der Karzinomdiagnostik wird die Computertomografie (CT) zum Staging bei höherem Rückfallrisiko empfohlen. Die Nachsorgekonzepte beinhalten Untersuchungsintervalle für die körperliche Untersuchung, Ultraschall und Mammografie, während weiterführende Gerätediagnostik und Tumormarkerbestimmungen bei der metastasierten Erkrankung Anwendung finden.
Purpose: The aim of this official guideline coordinated and published by the German Society for Gynecology and Obstetrics (DGGG) and the German Cancer Society (DKG) was to optimize the screening, diagnosis, therapy and follow-up care of breast cancer.
Methods: The process of updating the S3 guideline dating from 2012 was based on the adaptation of identified source guidelines which were combined with reviews of evidence compiled using PICO (Patients/Interventions/Control/Outcome) questions and the results of a systematic search of literature databases and the selection and evaluation of the identified literature. The interdisciplinary working groups took the identified materials as their starting point to develop recommendations and statements which were modified and graded in a structured consensus procedure.
Recommendations: Part 1 of this short version of the guideline presents recommendations for the screening, diagnosis and follow-up care of breast cancer. The importance of mammography for screening is confirmed in this updated version of the guideline and forms the basis for all screening. In addition to the conventional methods used to diagnose breast cancer, computed tomography (CT) is recommended for staging in women with a higher risk of recurrence. The follow-up concept includes suggested intervals between physical, ultrasound and mammography examinations, additional high-tech diagnostic procedures, and the determination of tumor markers for the evaluation of metastatic disease.
Es wird ein historischer Abriss der Geschichte der anatomischen Forschung an Moosen gegeben, der Aufbau von Laubmoosstämmchen skizziert und speziell die unterschiedliche Terminologie der Gewebetypen diskutiert. Der weit verbreitete Ausdruck Epidermis kann nicht auf Moose angewandt werden, weil die äußerste Schicht des Stämmchens nicht die Definiton des Begriffes erfüllt, verdickt und längsgestreckt ist. Sie gehört zur äußeren Sklerodermis. Längsgestreckt ist auch das sog. Parenchym oder Mark, das als Zentralgewebe (central tissue) bezeichnet wird. Insgesamt wird eine Gliederung in Hyalodermis, äußere und innere Sklerodermis, Zentralgewebe und Zentralstrang vorgenommen, wobei die englumige Sklerodermis durch weitlumige eine Rinde (Cortex) ersetzt sein kann.
A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploit. To facilitate consistent and systematic deposition and retrieval of data on biosynthetic gene clusters, we propose the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard.
The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons1,2. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories3, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons (), and 3He and nuclei carried out with the ALICE (A Large Ion Collider Experiment)4 detector in Pb–Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei5,6. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).
The transverse momentum (pT) spectrum and nuclear modification factor (RAA) of reconstructed jets in 0–10% and 10–30% central Pb–Pb collisions at √sNN = 2.76 TeV were measured. Jets were reconstructed using the anti-kT jet algorithm with a resolution parameter of R = 0.2 from charged and neutral particles, utilizing the ALICE tracking detectors and Electromagnetic Calorimeter (EMCal). The jet pT spectra are reported in the pseudorapidity interval of |ηjet| < 0.5 for 40 < pT, jet < 120 GeV/c in 0–10% and for 30 < pT, jet < 100 GeV/c in 10–30% collisions. Reconstructed jets were required to contain a leading charged particle with pT > 5 GeV/c to suppress jets constructed from the combinatorial background in Pb–Pb collisions. The leading charged particle requirement applied to jet spectra both in pp and Pb–Pb collisions had a negligible effect on the RAA. The nuclear modification factor RAA was found to be 0.28 ± 0.04 in 0–10% and 0.35 ± 0.04 in 10–30% collisions, independent of pT, jet within the uncertainties of the measurement. The observed suppression is in fair agreement with expectations from two model calculations with different approaches to jet quenching.
The ALICE Zero Degree Calorimeter system (ZDC) is composed of two identical sets of calorimeters, placed at opposite sides with respect to the interaction point, 114 meters away from it, complemented by two small forward electromagnetic calorimeters (ZEM). Each set of detectors consists of a neutron (ZN) and a proton (ZP) ZDC. They are placed at zero degrees with respect to the LHC axis and allow to detect particles emitted close to beam direction, in particular neutrons and protons emerging from hadronic heavy-ion collisions (spectator nucleons) and those emitted from electromagnetic processes. For neutrons emitted by these two processes, the ZN calorimeters have nearly 100% acceptance.
During the √sNN = 2.76 TeV Pb-Pb data-taking, the ALICE Collaboration studied forward neutron emission with a dedicated trigger, requiring a minimum energy deposition in at least one of the two ZN. By exploiting also the information of the two ZEM calorimeters it has been possible to separate the contributions of electromagnetic and hadronic processes and to study single neutron vs. multiple neutron emission.
The measured cross sections of single and mutual electromagnetic dissociation of Pb nuclei at √sNN = 2.76 TeV, with neutron emission, are σsingle EMD = 187:4 ± 0.2 (stat.)−11.2+13.2 (syst.) b and σmutual EMD = 5.7 ± 0.1 (stat.) ±0.4 (syst.) b, respectively [1]. This is the first measurement of electromagnetic dissociation of 208Pb nuclei at the LHC energies, allowing a test of electromagnetic dissociation theory in a new energy regime. The experimental results are compared to the predictions from a relativistic electromagnetic dissociation model.