• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Schuldes, Heidi (2)
  • Aksyutina, Yuliya (1)
  • Behnke, Claudia (1)
  • Deveaux, Michael (1)
  • Galatyuk, Tetyana (1)
  • Ghosh, Pradeep (1)
  • Hamdi, Abdennacer (1)
  • Huck, Patrick (1)
  • Klaus, Philipp Lothar (1)
  • Lang, Simon Martin (1)
+ more

Year of publication

  • 2015 (3)
  • 2016 (3)
  • 2007 (2)
  • 2008 (2)
  • 2009 (2)
  • 2011 (2)
  • 2012 (2)
  • 2013 (2)
  • 2017 (2)
  • 2019 (2)
+ more

Document Type

  • Doctoral Thesis (26)
  • Master's Thesis (3)

Language

  • English (25)
  • German (4)

Has Fulltext

  • yes (29)

Is part of the Bibliography

  • no (29)

Keywords

  • CBM (2)
  • Dileptonen (2)
  • HADES (2)
  • Schwerionenphysik (2)
  • Spurselektion (2)
  • dileptons (2)
  • heavy ion physics (2)
  • in-Medium Modifikation (2)
  • track selection (2)
  • vector mesons (2)
+ more

Institute

  • Physik (29)

29 search hits

  • 1 to 10
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Hadron ratio fluctuations in heavy-ion collisions (2012)
Schuster, Tim
The first measurement of the fluctuation of the kaon-to-proton ratio in relativistic heavy-ion collisions is presented. This thesis details the analysis procedure for identifying kaons and protons using the NA49 experiment at CERN-SPS and discusses the results in the context of the current state of the field.
Development of fast and radiation hard Monolithic Active Pixel Sensors (MAPS) optimized for open charm meson detection with the CBM - vertex detector (2007)
Deveaux, Michael
The work presented in this thesis addresses a key issue of the CBM experiment at FAIR, which aims to study charm production in heavy ion collisions at energies ranging from 10 to 40 AGeV . For the first time in this kinematical range, open charm mesons will be used as a probe of the nuclear fireball. Despite of their short decay length, which is typically in the order of few 100 µm in the laboratory frame, those mesons will be identified by reconstructing their decay vertex.
Light unbound nuclear systems beyond the dripline (2009)
Aksyutina, Yuliya
Starting from the first observation of the halo phenomenon 20 years ago, more and more neutron-rich light nuclei were observed. The study of unstable nuclear systems beyond the dripline is a relatively new branch of nuclear physics. In the present work, the results of an experiment at GSI (Darmstadt) with relativistic beams of the halo nuclei 8He, 11Li and 14Be with energies of 240, 280 and 305 MeV/nucleon, respectively, impinging on a liquid hydrogen target are discussed. Neutron/proton knockout reactions lead to the formation of unbound systems, followed by their immediate decay. The experimental setup, consisting of the neutron detector LAND, the dipole spectrometer ALADIN and different types of tracking detectors, allows the reconstruction of the momentum vectors of all reaction products measured in coincidence. The properties of unbound nuclei are investigated by reconstructing the relative-energy spectra as well as by studying the angular correlations between the reaction products. The observed systems are 9He, 10He, 10Li, 12Li and 13Li. The isotopes 12Li and 13Li are observed for the first time. They are produced in the 1H(14Be, 2pn)12Li and 1H(14Be, 2p)13Li knockout reactions. The obtained relative-energy spectrum of 12Li is described as a single virtual s-state with a scattering length of as = -22;13.7(1.6) fm. The spectrum of 13Li is interpreted as a resonance at an energy of Er = 1.47(13) MeV and a width of Gamma ~ 2 MeV superimposed on a broad correlated background distribution. The isotope 10Li is observed after one-neutron knockout from the halo nucleus 11Li. The obtained relative-energy spectrum is described by a low-lying virtual s-state with a scattering length as = -22.4(4.8) fm and a p-wave resonance with Er = 0.566(14) MeV and Gamma = 0.548(30) MeV, in agreement with previous experiments. The observation of the nucleus 8He in coincidence with one or two neutrons, as a result of proton knockout from 11Li, allows to reconstruct the relative-energy spectra for the heavy helium isotopes, 9He and 10He. The low-energy part of the 9He spectrum is described by a virtual s-state with a scattering length as = -3.16(78) fm. In addition, two resonance states with l 6= 0 at energies of 1.33(8) and 2.4 MeV are observed. For the 10He spectrum, two interpretations are possible. It can be interpreted as a superposition of a narrow resonance at 1.42(10) MeV and a broad correlated background distribution. Alternatively, the spectrum is being well described by two resonances at energies of 1.54(11) and 3.99(26) MeV. Additionally, three-body energy and angular correlations in 10He and 13Li nuclei at the region of the ground state (0 < ECnn < 3 MeV) are studied, providing information about structure of these unbound nuclear systems.
Di-electron spectroscopy in HADES and CBM : from p + p and n + p collisions at GSI to Au + Au collisions at FAIR (2009)
Galatyuk, Tetyana
The study of the electromagnetic structure of hadrons plays an important role in understanding the nature of matter. In particular the emission of lepton pairs out of the hot and dense collision zone in heavy-ion reactions is a promising probe to investigate in-medium properties of hadrons and in general the properties of matter under such extreme conditions. The first experimental observation of an enhanced di-electron yield in the invariant-mass region 0:3 - 0:7 GeV/c2 in p+Be collisions at 4:9 GeV/u beam energy [2] was announced by the DLS collaboration [1]. Recent results of the HADES collaboration show a moderate enhancement above n Dalitz decay contributions for 12C+12C at 1 and 2 GeV/u [3, 4] confirming the DLS results. There are several theoretical explanations of this observation, most of them focusing on possible in-medium modifications of the properties of vector mesons. At low beam energies the question whether the observed excess is related to any in-medium effects remains open because of uncertainties in the description of elementary di-electron sources. In this work the di-electron production in p+p and d+p reactions at a kinetic beam energy of 1:25 GeV/u measured by the HADES spectrometer is discussed. At Ekin = 1:25 GeV/u, i.e. below the n meson production threshold in proton-proton reactions, the delta Dalitz decay is expected to be the most abundant source above the pi 0 Dalitz decay region. The observed large difference in di-electron production in p+p and d+p collisions suggests that di-electron production in the d+p system is dominated by the n+p interaction. In order to separate delta Dalitz decays and np bremsstrahlung the di-electron yield observed in p+p and n+p reactions, both measured at the same beam energy, has been compared. The main interest here is the investigation of iso-spin effects in baryonic resonance excitations and the off-shell production of vector mesons [5]. We indeed observe a large difference in di-electron production in p+p and n+p reactions. Results of these studies will be compared to recent calculations. We will also present our experimentally defined cocktail for heavy-ion data. At much higher beam energies experimental results of the CERES [6] and NA60 [7] collaborations also show an enhancement in the invariant mass region 0:3 - 0:7 GeV/c2, in principle similar to the situation in DLS. A strong excess of lepton pairs observed by recent high energy heavy-ion dilepton experiments hint to a strong influence of baryons, however no data exist at highly compressed baryonic matter, achievable in heavy-ion collisions from 8 - 45 GeV/u beam energy. These conditions would allow to study the expected restoration of chiral symmetry by measuring in-medium modifications of hadronic properties, an experimental program which is foreseen by the future CBM experiment at FAIR. The experimental challenge is to suppress the large physical background on the one hand and to provide a clean identification of electrons on the other hand. In this work, strategies to reduce the combinatorial background in electron pair measurements with the CBM detector are discussed. The main goal is to study the feasibility of effectively reducing combinatorial background with the currently foreseen experimental setup, which does not provide electron identification in front of the magnetic field.
Towards new front-end electronics for the HADES drift chamber system (2019)
Wiebusch, Michael
HADES (High Acceptance DiElectron Spectrometer), located at GSI, is a versatile detector for precise spectroscopy of e+ e- pairs and charged hadrons produced on a fixed target in a 1 to 3.5 AGeV kinetic beam energy region. The main experimental goal is to investigate properties of dense nuclear matter created in heavy ion collisions and learn about in-medium hadron properties. In the HADES set-up 24 Mini Drift Chambers (MDC) allow for track reconstruction and determining the particle momentum by exploiting charged particle deflection in a magnetic field. In addition, the drift chambers contribute to particle identification by measuring the energy loss. The read-out concept foresees each sensing wire to be equipped with a preamplifier, analog pulse shaper and discriminator. In the current front-end electronics, the ASD-8 ASIC comprises the above modules. Due to limitations of the current on-board time to digital converters (TDC), especially regarding higher reaction rates expected at the future FAIR facility (HADES at SIS-100), the electronics need to be replaced by new board featuring multi-hit TDCs. Whereas ASD-8 chips cannot be procured anymore, a promising replacement candidate is the PASTTREC ASIC, developed by JU Krakow, which was tested w.r.t. suitability for MDC read-out in a variety of set-ups and, where possible, in direct comparison to ASD-8. The timing precision, being the most crucial performance parameter of the joint system of detector and read-out electronics, was assessed in two different set-ups, i.e. a cosmic muon tracking set-up and a beam test at the COSY accelerator at Juelich using a minimum ionizing proton beam. The beam test results were reproduced and can thus be quantitatively explained in a three dimensional GARFIELD simulation of a HADES MDC drift cell. In particular, the simulation is able to describe the characteristic dependence of the time precision on the track position within the cell. A circuit simulation (SPICE) was used to closely model the time development of a raw drift chamber pulse, measured as a response to X-rays from a 55 Fe source. The insights gained from this model were used for attributing realistic charge values to the time over threshold values measured with the read-out ASICs in a charge calibration set-up. Furthermore, a high-level circuit simulation of the PASTTREC shaper is implemented to serve as a demonstration of the effect of the individual shaping and tail cancellation stages which are present in both ASICs.
Measurement of low-mass e+e- pair production in 2AGeV C-C collisions with HADES (2007)
Sudol, Malgorzata
The search for a modification of hadron properties inside nuclear matter at normal and/or high temperature and density is one of the more interesting issues of modern nuclear physics. Dilepton experiments, by providing interesting results, give insight into the properties of strong interaction and the nature of hadron mass generation. One of these research tools is the HADES spectrometer. HADES is a high acceptance dilepton spectrometer installed at the heavy-ion synchrotron (SIS) at GSI, Darmstadt. The main physics motivation of HADES is the measurement of e+e- pairs in the invariant-mass range up to 1 GeV/c2 in pion- and proton-induced reactions, as well as in heavy-ion collisions. The goal is to investigate the properties of the vector mesons rho, omega and of other hadrons reconstructed from e+e- decay pairs. Dileptons are penetrating probes allowing to study the in-medium properties of hadrons. However, the measurement of such dilepton pairs is difficult because of a very large background from other processes in which leptons are created. This thesis presents the analysis of the data provided by the first physic run done with the HADES spectrometer. For the first time e+e- pairs produced in C+C collisions at an incident energy of 2 GeV per nucleon have been collected with sufficient statistics. This experiment is of particular importance since it allows to address the puzzling pair excess measured by the former DLS experiment at 1.04 AGeV. The thesis consists of five chapters. The first chapter presents the physics case which is addressed in the work. In the second chapter the HADES spectrometer is introduced with the characteristic of specific detectors which are part of the spectrometer. Chapter three focusses on the issue of charged-particle identification. The fourth chapter discusses the reconstruction of the di-electron spectra in C+C collisions. In this part of the thesis a comparison with theoretical models is included as well. The conclusion and final remarks are given in chapter five.
Electronic properties of single crystal CVD diamond and its suitability for particle detection in hadron physics experiments (2008)
Pomorski, Michal
This work presents the study on the suitability of single-crystal CVD diamond for particle-detection systems in present and future hadron physics experiments. Different characterization methods of the electrical and the structural properties were applied to gain a deeper understanding of the crystal quality and the charge transport properties of this novel semiconductor material. First measurements regarding the radiation tolerance of diamond were performed with sensors heavily irradiated with protons and neutrons. Finally, detector prototypes were fabricated and successfully tested in various experiments as time detectors for minimum ionizing particles as well as for spectroscopy of heavy ions at the energy ranges available at the SIS and the UNILAC facilities of GSI. ...
Dielectron analysis in p - p collisions at 3.5 GeV with the HADES spectrometer : omega-meson line shape and a new electronics readout for the Multi-wire Drift Chambers (2010)
Tarantola Peloni, Attilio
The HADES (High Acceptance DiElectron Spectrometer) is an experimental apparatus installed at the heavy-ion synchrotron SIS-18 at GSI, Darmstadt. The main physics motivation of the HADES experiment is the measurement of e+e− pairs in the invariant-mass range up to 1 GeV/c2 in heavy-ion collisions as well as in pion and proton-induced reactions. The HADES physics program is focused on in-medium properties of the light vector mesons ρ(770), ω(783) and φ(1020), which decay with a small branching ratio into dileptons. Dileptons are penetrating probes which allow to study the in-medium properties of hadrons. However, in heavy-ion collisions, the measurement of such lepton pairs is difficult because they are rare and have a very large combinatorial background. Recently, HADES has been upgraded with new detectors and new electronics in order to handle higher intensity beams and reactions with heavy nuclei up to Au. HADES will continue for a few more years its rich physics program at its current place at SIS-18 and then move to the upcoming international Facility for Antiproton and Ion Research (FAIR) accelerator complex. In this context the physics results presented in this work are important prerequisites for the investigation of in-medium vector meson properties in p + A and A+A collisions. This work consists of five chapters. The first chapter introduces the physics motivation and a review of recent physics results. In the second chapter, the HADES spectrometer is described and its sub-detectors are presented. Chapter three deals with the issue of lepton identification and the reconstruction of the dielectron spectra in p + p collisions is presented. Here, two reactions are characterized: inclusive and exclusive dilepton production reactions. From the spectra obtained, the corresponding cross sections are presented with the respective statistical and systematical errors. A comparison with theoretical models is included as well. Conclusions are given in chapter four. The final part of this work is dedicated to the HADES upgrade, whose goal is among others the achievement of a reliable and fast data acquisition of the Multiwire Drift Chambers (MDCs). Chapter five presents my contribution to this successful project during the three years of my stay at GSI.
Exotic meson photoproduction at GlueX – search for the hybrid candidate Y(2175) (2020)
Hamdi, Abdennacer
Understanding the hadron spectrum is one of the primary goals of non-perturbative QCD. Many predictions have experimentally been confirmed, others still remain under experimental investigation. Of particular interest is how gluonic excitations give rise to states with constituent glue. One class of such states are hybrid mesons that are predicted by theoretical models and Lattice QCD calculations. Searching for and understanding the nature of these states is a primary physics goal of the GlueX experiment at the CEBAF accelerator at Jefferson Lab. A search for a JPC = 1−− hybrid meson candidate, the Y(2175), in φ(1020)π+π+ and φ(1020)f0(980) channels in photoproduction on a proton target has been conducted. A first measurement of non-resonant φ(1020)π+π+ and φ(1020)f0(980) total cross sections in photoproduction has been performed. An upper limit on the resonance production cross section for the Y (2175) → φ(1020)π+π+ and Y (2175) → φ(1020)f0(980) channels are estimated. Since the analysis essentially depends on the quality of the charged kaon identification, also an optimization of particle identification through an improvement of the energy loss estimation in the central drift chamber by a truncated mean method has been investigated.
Development of prototype components for the Silicon Tracking System of the CBM experiment at FAIR (2013)
Lymanets, Anton
The CBM experiment at future accelerator facility FAIR will investigate the properties of nuclear matter under extreme conditions. The experimental programm is different from the heavy-ion experiments at RHIC (BNL) and LHC (CERN) that create nuclear matter at high temperatures. In contrast, the study of the QCD phase diagram in the region of the highest net baryon densities and moderate temperatures that is weakly explored will be performed with high precision. For this, collisions of different heavy-ion beams at the energies of 10–45GeV/nucleon with nuclear target will be measured. The physics programme of the CBM experiment includes measurement of both rare probes and bulk observables that originate from various phases of a nucleus-nucleus collision. In particular, decay of particles with charm quarks can be registered by reconstructing the decay vertex detached from the primary interaction point by several hundreds of micrometers (e.g., decay length c Tau = 123 µm for D0 meson). For this, precise tracking and full event reconstruction with up to 600 charged particle tracks per event within acceptance are required. Other rare probes require operation at interaction rate of up to 10MHz. The detector system that performs tracking has to provide high position resolution on the order of 10 µm, operate at high rates and have radiation tolerant design with low material budget. The Silicon Tracking System (STS) is being designed for charged-particle tracking in a magnetic field. The system consists of eight tracking station located in the aperture of a dipole magnet with 1T field. For tracks with momentum above 1GeV, momentum resolution of such a system is expected to be about 1%. In order to fulfill this task, thorough optimization of the detector design is required. In particular, minimal material budget has to be achieved. Production of a detector module requires research and development activities with respect to the module components and their integration. A detector module is a basic functional unit that includes a sensor, an analogue microcable and frontend electronics mounted on a support structure. The objective of the thesis is to perform quality assurance tests of the prototype module components in order to validate the concept of the detector module and to demonstrate its operation using radioactive sources and particle beams. Double-sided silicon microstrip detectors have been chosen as sensor technology for the STS because of the combination of a good spatial resolution, two-dimensional coordinate measurement achieved within low material budget (0.3%X0), high readout speed and sufficient radiation tolerance. Several generations of double-sided silicon microstrip sensors have been manufactured in order to explore the radiation hard design features and the concept of a large-area sensor compatible with ladder-type structure of the detector module. In particular, sensors with double metal layer on both sides and active area of 62×62mm2 have been produced. Electrical characterization of the sensors has been performed in order to establish the overall operability as well as to extract the device parameters. Current-voltage, capacitance-voltage characteristics and interstrip parameters have been measured. Readout of the sensors has been done using self-triggering front-end electronics. A front-end board has been developed based on the n-XYTER readout chip with data driven architecture and capable of operating at 32MHz readout rate. The front-end board included an external analog-to-digital converter (ADC). Calibration of the ADC has been performed using both 241Am X-ray source and external pulse generator. Threshold calibration and investigation of temperature dependence of chip parameters has been carried out. Low-mass support structures have been developed using carbon fibre that has the rigidity to hold the detector modules and introduce minimal Coulomb scattering of the particle tracks. Analogue microcables have been produced with aluminium traces on a polyimide substrate, thus combining good electrical connection with low material budget. Microcable structure includes several layers optimized for low trace capacitance and thus low-noise performance. A demonstrator tracking telescope has been constructed and operated in several beam tests including 2.5GeV proton beam at COSY synchrotron (Jülich). Three tracking stations have been complemented with several beam hodoscopes. Analysis of the beam data has yielded information on analogue and timing response, beam profile. Tracking and alignment information has been obtained. Beam stability has been evaluated using specially developed monitoring tools. As a result of conducted studies, performance of the module components have been evaluated and requirements to the detector module have been formulated. Practical suggestions have been made with respect to the structure of the detector module, whereas precise definition of the final detector module design was outside of the scope of this thesis.
  • 1 to 10

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks