Leaf phenology : from physiology to global change

  • The timing and duration of leaf deployment strongly regulate earth-atmosphere interactions and biotic processes. Leaf dynamics therefore have major implications for life on earth, including the global energy balance, carbon and water cycles, feedbacks to climate, species extinction risk and agriculture. Evidence of shifts in the timing of leaf deployment and senescence (leaf phenology) as a result of climate change has been accumulating over the past decades, particularly in relation to spring phenology in the northern hemisphere. However, leaf phenological change in other parts of the world has received less attention. This thesis quantifies global phenological change over the past three decades using remotely sensed data. Phenological change was found to be widespread and severe, also in the southern hemisphere. While the detected change testifies of the phenological plasticity of many plant species, it is not clear if the duration of leaf deployment (leaf habit) is equally sensitive to environmental change. Since evergreen and deciduous leaf habits are often distinctly sorted along environmental gradients, ecologists have hypothesised that these patterns result from natural selection for an optimal leaf habit, under a given environmental regime. Such evolutionary convergence can be examined by testing if the physiological niche that is occupied by a particular leaf habit (evergreen or deciduous) is similar among regions with distinct evolutionary histories. Using a process-based model of plant growth and a constructed map of evergreen and deciduous vegetation, the physiological niche of leaf habits was quantified in four global biogeographic realms. Substantial niche overlap was found between the same leaf habit in different realms, suggesting evolutionary convergence of the physiological niche. This implies a sensitivity of leaf habit to environmental change, as environmental variables determine the geographic space where the physiological niche allows a positive carbon balance, and therefore occurrence of the leaf habit. Since the physiological niche consists of the integrated effects of physiological traits and trade-offs, environmental dependencies and leaf habit and phenology, an understanding of the carbon economy of individual plants requires decomposing the physiological niche into its components. Using empirical data on leaf phenology, leaf habit and physiological processes from woody species in a seasonally dry African savanna, a simple carbon balance model was parametrised. Carbon gain varied considerably between species as a result of substantial variation in leaf habit, leaf phenology and physiological traits. The multiple lines of evidence in this thesis therefore suggest that, while convergent selective forces may determine the dominant leaf habit in a particular environment, inter-specific variation is substantial, potentially as a consequence of historical contingencies or competitive interactions.

Download full text files

Export metadata

Author:Robert Buitenwerf
Place of publication:Frankfurt am Main
Referee:Steven I. Higgins, Thomas HicklerORCiD
Advisor:Steven I. Higgins
Document Type:Doctoral Thesis
Date of Publication (online):2016/02/18
Year of first Publication:2015
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2015/04/02
Release Date:2016/02/18
Tag:Ecology; Global change; Plant physiology; Remote sensing; Savanna; Species distribution modelling
Page Number:194
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht