• search hit 4 of 6
Back to Result List

Biophysikalische Untersuchungen an RNS

  • mRNS ist einer der wichtigsten Informationsträger in lebenden Zellen. Mit ihr wird die in der DNS gespeicherte Information zu aktiven Zellprozessen umgesetzt. Dabei finden erste regulatorische Prozesse, die den Phänotyp eines Organismus bestimmen können, bereits über Strukturelemente auf der mRNS statt. Diese, als Riboschalter bezeichneten Strukturen, können spezifisch, kleine Moleküle binden und dadurch ihre Struktur ändern. Durch diese dynamische Änderung der Struktur, in An- oder Abwesenheit des Liganden, wird reguliert, ob nachfolgende Gene vom Ribosom abgelesen werden können. Der Cd1-Riboschalter aus Clostridium Difficile ist schon während der Transkription aktiv und ein Teil des regulatorischen Netzwerkes, das bestimmt, ob das Bakterium einen mobilen oder stationären Lebensstil einnimmt. Das zentrale Signalmolekül in diesem Netzwerk ist der sekundäre Botenstoff c-di-GMP, der gleichzeitig auch der Ligand des Cd1-Riboschalters ist. In der folgenden Arbeit wurde der zeitliche und strukturelle Ablauf des Cd1 Regulationsmechanismus und die Bindung von c-di-GMP untersucht. Auch ohne einen Riboschalter in der Sequenz ist strukturierte mRNS ein interessanter Forschungsgegenstand. Wie die Covid-19 Pandemie und die Forschungen, mRNS Abschnitte als Krebsmedikamente zu gebrauchen, zeigen, gewinnt RNS immer mehr an Bedeutung für die medizinische Forschung und Anwendung. Mit dieser Motivation im Hintergrund wurden drei weitere RNS Projekte bearbeitet. Im ersten wurde ein 19F-Screening für die Erkennung von RNS bindenden Fragmenten etabliert. Im zweiten wurde ein RNS Doppelstrang untersucht, der mit Hilfe verschiedener, kovalent gebundener Spiropyrane reversibel gefaltet und entfaltet werden sollte. Im abschließenden Projekt wurden im Rahmen der COVID-19-NMR Initiative zwei Sekundärstrukturelemente der Covid-19 RNS untersucht. Bei der Untersuchung des Cd1-Riboschalters konnten folgende Ergebnisse erzielt werden. Es wird gezeigt, dass die Bindung von c-di-GMP an das Cd1-Aptamer ein konzentrationsabhängiges Magnesiumverhältnis braucht. Dieses Verhältnis wurde ausgehend von initialen Messungen als 1/40 (RNS/Ligand) bestimmt. Spätere ITC Messungen geben aber Hinweise darauf, dass dieses Verhältnis bei niedrigen RNS Konzentrationen höher liegt und bei größeren RNS Konzentrationen niedriger. Die Bestimmung des Start- und Endpunktes der c-di-GMP Bindung wird in Unterkapitel 3.1.2 behandelt. Es wurde ermittelt, dass Cd1 bei 83 Nukleotiden eine alternative schwach Ligand bindende Konformation einnimmt, die wahrscheinlich durch eine P1 Helix bis zum Erreichen von Cd1-87 stabilisiert wird. Ab Cd1-87 bildet sich die reguläre von der Literatur vorhergesagte Bindetasche. Das Ende der c-di-GMP Bindung wird mit Cd1-148 erreicht, auch wenn hier noch Reste der Reportersignale für Bindung zu sehen sind. Diese Reste werden aber aller Wahrscheinlichkeit nach durch eine Cd1-83 entsprechende Konformation der Bindetasche erzeugt. In Kapitel 3.2 wird gezeigt, wie durch NMR Messungen die Zuordnung der Sekundärstruktur des Cd1-Riboschalters vollzogen wurde. Durch diese Messungen konnte bestätigt werden, dass in allen Längen eine P2 und P3 Helix vorhanden ist. Im Aptamer wird die Ligandbindung durch zwei Interaktionen zwischen P2 und P3 stark stabilisiert und der untere Abschnitt der P3 erst dann nicht mehr dynamisch, wenn c-di-GMP gebunden wird. Durch x-filter Experimente und Mutationen konnte nachgewiesen werden, dass C87 das basenpaarende Nukleotid an einem G des Liganden ist. Die Anwesenheit des HP1 Stamms konnte in den Längen 147, 148 und 160 nachgewiesen werden, wobei besonders der Vergleich der NOESY Spektren von Cd1-147 und Cd1-148 die Änderung der Sekundärstruktur hin zum Antiterminator zeigen. Der Verlauf der Bindungsaffinitäten wurde auch durch ITC Messungen an Cd1-83, 86, 87, 88, 135 und 146 bestätigt. Für die volle Länge (Cd1-160) des Riboschalters konnte gezeigt werden, dass der Terminatorstamm ausgeformt ist. Die erreichten Ergebnisse wurden in einem Modell zusammengefasst und der zeitliche Verlauf der Cd1 Regulation simuliert. Aus der Simulation ist zu erkennen, dass Cd1, wie erwartet, Ligand abhängig schaltet. Dabei ist der Aus-Zustand bei hoher Ligandkonzentration zu 90% populiert und der An-Zustand zu 100% bei niedriger Konzentration. Des Weiteren konnte gezeigt werden, dass die Transkriptionsgeschwindigkeit bei hohen Ligandkonzentrationen einen starken Einfluss auf die Regulationseffizienz des Riboschalters hat. So ist bei einer Transkriptionsgeschwindigkeit von 100 nt/s nach 1 s eine Gleichverteilung von An- und Aus-Zustand zu erkennen. Dieses Verhalten kann durch einen Stopp der Transkription an der potentiellen Pausierstelle U141-145 aufgehoben werden. Unter den Rahmenbedingungen des Modells erwiesen sich Transkriptionsgeschwindkeiten von um die 20 nt/s als optimal und bei niedrigen Ligandkonzentrationen hatte die Transkriptionsgeschwindigkeit faktisch keine Auswirkungen auf die Regulation. Ein interessantes Ergebniss der Modellierung ergab sich aus der Notwendigkeit der Verwendung einer Rate für konkurrenzlose Basenpaarschließungen. Hier konnte gezeigt werden, dass eine Rate von 400 nt/s ausreicht um einen voll funktionsfähigen Riboschalter zu beschreiben. Beim 19F Bindungsscreenings von 101 Fragmenten, die alle ein oder mehrere 19F Atome besaßen, an Cd1-98 wurden 9 Fragmente gefunden die an Cd1-98 binden. Diese sind größtenteils planar mit Ausnahme von 2 Fragmenten bei denen die eine Hälfte des Moleküls nicht aromatisch ist. Des Weiteren besitzen alle Fragmente, außer einem, mindestens eine Aminogruppe im Molekül. Die daraus resultierende Vermutung, dass die Fragmente in die RNS interkalieren, konnte durch RNS beobachtende NMR Messungen nicht überprüft werden, da keine Signaländerung im Imino-Bereich zu erkennen war. Durch Verdrängungsexperimente konnte gezeigt werden, dass die Fragmente, nicht wie c-di-GMP, die RNS Faltung homogenisieren und auch nicht in der Bindetasche gebunden werden.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Tom LandgrafORCiDGND
URN:urn:nbn:de:hebis:30:3-803797
DOI:https://doi.org/10.21248/gups.80379
Place of publication:Frankfurt am Main
Referee:Harald SchwalbeORCiDGND, Alexander HeckelORCiDGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2023/12/06
Year of first Publication:2022
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2023/10/10
Release Date:2023/12/14
Page Number:134
HeBIS-PPN:514073586
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht