• search hit 9 of 12
Back to Result List

Synthesis and biological characterization of esterified lipid mediators

  • This work focused on the biosynthesis and characterization of esterified lipid mediators. Lipid mediators were generally thought to exert their effects as free molecules, and their esterification was regarded as a storage mechanism. However, more recent studies indicate that esterified lipid mediators are a distinct class of mediators. When this thesis started back in 2017, the idea of esterified lipids as a new class of mediators was relatively new so that respective compounds were either quite expensive or not commercially available at all. Therefore, a biosynthetic approach had to be established first to enable the study of the new lipid mediator class. Within the cell, esterified lipids are produced by activation and subsequent incorporation of polyunsaturated fatty acids. These steps are enzymatically catalyzed by members of the acyl-CoA synthetase family and the lysophosphatidylcholine acyltransferase family, respectively. Therefore, the enzymes acyl-CoA synthetase long-chain family member 4 (ACSL4) and lysophosphatidylcholine acyltransferase 2 (LPCAT2) were selected for a biosynthetic approach due to their broad substrate acceptance. In a first attempt, recombinant protein expression in E. coli was studied. While the expression and purification of C-terminally His6x-tagged ACSL4 resulted in a pure and active protein, the expression of LPCAT2 turned out quite troublesome. Although several expression and purification parameters were varied, including purification tags, buffer compositions, and chromatography strategies, successful purification of LPCAT2 was not achieved. Instead, a second approach was studied. This time, stably transfected cells overexpressing ACSL4 and/or LPCAT2 were generated from the human embryonal kidney (HEK) 293T cell line. Stably transfected cell lines were characterized on protein level and regarding their oxylipin profile. After confirming the overexpression and functionality of the enzymes, lipoxygenases (LOs) were co-expressed in a doxycycline-inducible manner to prevent premature cell death due to increased oxidative stress. As a result, LO product formation was enhanced and enabled the investigation of specific oxylipins. Since increased lipid peroxidation is also a key component of the ferroptosis cell death mechanisms, cell lines were investigated towards their cell viability. Indeed, expression of ACSL4 and/or LPCAT2 promoted cell death when treated with the ferroptosis inducers erastin or RSL3, even in the absence of LO expression. Furthermore, analysis by laser scanning confocal microscopy revealed that the localization of 15-LO1 was altered in the presence of LPCAT2, similar to treatment with RSL3 in vector control cells. In conclusion, a stable overexpression system of ACSL4 and/or LPCAT2 was successfully established in HEK293T cells, which enabled the synthesis and characterization of esterified oxylipins. Interestingly, characterization of the cell lines revealed a correlation with the cell death mechanism ferroptosis. Although the expression of ACSL4 has already been reported as a biomarker for ferroptosis, this is the first time that a potential connection of LPCAT2 with ferroptosis was demonstrated. As a result, this may provide new therapeutic options for ferroptosis-related pathologies such as neurodegeneration, autoimmune diseases, or tumorigenesis.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Bjarne GoebelORCiDGND
URN:urn:nbn:de:hebis:30:3-858352
DOI:https://doi.org/10.21248/gups.85835
Place of publication:Frankfurt am Main
Referee:Dieter SteinhilberORCiDGND, Eugen ProschakORCiDGND
Advisor:Dieter Steinhilber, Ann-Kathrin Häfner
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2024/06/11
Year of first Publication:2023
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2024/06/04
Release Date:2024/06/11
Page Number:235
HeBIS-PPN:519021177
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht