• search hit 3 of 3174
Back to Result List

Customization of cell-free lysates for membrane protein expression and NMR analysis

  • The evolution of cell-free protein synthesis (CFPS) over recent decades has made it a widely used system for expressing membrane proteins (MPs). Unlike traditional methods, CFPS allows direct and translocon-independent expression of MPs within lipid membranes, such as liposomes or nanodiscs (NDs), without the need for detergent solubilization. This open nature of CF systems enables customization of the experimental environment, including expression conditions, choice of nanoparticles (NPs), lipid composition, and addition of stabilizing molecules. Membrane scaffold protein (MSP)-based NDs emerged as a gold standard for cotranslational solubilization of MPs using the CF-system. This approach allowed not only biochemical characterization, but also structural studies of MPs and even GPCRs. However, to solubilize MPs inside nanoparticles via the traditional reconstitution route, apart from MSPs other scaffolds were successfully implemented, e.g. the saposin A (commercially known as Salipro) scaffold system or the synthetic styrene maleic acid lipid particles (SMALPs). In this study the potential of saposin A-based nanoparticles (SapNPs) was explored for cotranslational MP solubilization. Three strategies for applying SapNPs in CF systems were investigated: preassembly, (i) coassembly (ii), and coexpression (iii). (i) Preassembly involved forming SapNPs before CF expression and adding them to the CF reaction. In coassembly mode SapA and lipids were mixed in the CF reaction for spontaneous assembly with the synthesized MP. In coexpression mode lipids were added to the CF reaction while coexpressing SapA with the MP target. Proteorhodopsin (PR) served as a model protein to evaluate these strategies due to its ability to oligomerize and straightforward quantification using the cofactor retinal. Preassembled SapNPs provided homogeneous, aggregate-free particles yielding up to 200 µM solubilized PR inside in the CF reaction. Coassembly was also successfully applied to produce PR/SapNP complexes at slightly lower yields, however the system was prone to produce soluble aggregates at too high PR template concentrations and overall needed more adjustments. Coexpression resulted in PR yields below 20 µM and was not considered viable for MP production. Finally, the preassembled SapNPs were used to produce functional G-protein coupled receptor probes. Despite lower overall performance compared to MSP-based systems, SapNPs showed potential as an alternative in CF systems for specific MPs. The second optimization approach was directed at the CF lysate itself. CF synthesis for NMR analysis benefits from selective labeling schemes enabled by truncated amino acid (AA) metabolic pathways in lysates, reducing spectral ambiguity. However, residual enzymatic AA conversions persist, leading to label dilution and ambiguous NMR spectra. This study aimed to eliminate these residual activities in the E. coli A19 strain, generating optimized CF lysates for NMR applications. The approach involved cumulative gene deletions of the most problematic scrambling enzymes. The new strain, “Stablelabel,” included deletions and modifications in genes asnA, ansA, ansB, glnA, aspC, and ilvE, effectively eliminating background activities of L-Asn, L-Asp, and conversions of L-Glu to L-Asp and L-Gln. However, residual conversion of L-Gln to L-Glu persisted due to glutaminase activity of several glutaminases using the inhibitor 6 diazo-5-oxo-L-norleucine (DON). Stablelabel showed a slightly slower growth than A19, and an overall good performance with 2.7 mg/mL GFP expressed in the reaction mixture (RM) compared to the parental A19 strain with 3.5 mg/mL. Furthermore, the strain was successfully applied to demonstrate methyl group labeling of MPs using preconverted L-val and L-leu from their respective precursors 2-ketoisovalerate and 4-methyl-2-oxovalerate. In this study, lipid nanoparticle particle-and strain engineering vividly demonstrated the potential of CFPS systems and their versatility. While the SapNP system requires further engineering to potentially reach the efficiency of the well-studied MSP NDs, this study provides an example of nanoparticle characterization allowing new insights into NP behavior in CF systems. Furthermore, it was shown that strain engineering is a straightforward solution to tailor CF lysates to the individual requirements. After this thesis was submitted, Stablelabel in fact was successfully applied for backbone assignment of casein kinase 1, thereby demonstrating its suitability to express complex targets for NMR studies.

Download full text files

Export metadata

Metadaten
Author:Roman LevinORCiDGND
URN:urn:nbn:de:hebis:30:3-864653
DOI:https://doi.org/10.21248/gups.86465
Place of publication:Frankfurt am Main
Referee:Volker DötschORCiDGND, Clemens GlaubitzORCiDGND
Advisor:Frank Bernhard
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2024/08/12
Year of first Publication:2023
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2023/11/13
Release Date:2024/08/12
Tag:Cell-free Protein Expression
Page Number:128
HeBIS-PPN:52058158X
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International