On the crosstalk between transmembrane and nucleotide binding domains of the ABC transport complex TAP

  • By translocating proteasomal degradation products into the endoplasmic reticulum (ER) for loading of major histocompatibility complex (MHC) class I molecules, the ATP binding cassette (ABC) transporter associated with antigen processing (TAP) plays a pivotal role in the adaptive immunity against infected or malignantly transformed cells. A key question regarding the transport mechanism is how the inter-domain communication and conformational dynamics of the TAP complex are connected during the peptide transport. To identify residues involved in this processes, we evolved a Trojan horse strategy in which a small artificial protease is inserted into antigenic epitopes. After binding, the TAP backbone in contact is cleaved, allowing the peptide sensor site to be mapped by mass spectrometry. Within this study, the peptide sensor and transmission interface have been identified. This region aligns with the cytosolic loop 1 (CL1) of Sav1866 and MsbA. Based on a number of experimental data and the homology to the bacterial ABC exporter Sav1866, we constructed a 3D structural model of the core TAP complex. According to this model, the CL1 and CL2 of TAP1 are extended cytosolic loops connecting the transmembrane helices (TMH) 2 and 3, and TMH4 and 5 respectively, and contact both nucleotide binding domains (NBDs) of the opposite subunit. In contrast to exporters, the cytosolic loop (named L-loop) of BtuCD importer is much shorter, and contacts only one NBD. The data confirm that the CL1 of TAP1 functions as signal transducer in ABC exporters, because it does not interfere with substrate binding but with substrate transport. The peptide contact site identified herein is restructured during the ATP hydrolysis cycle. Importantly, TAP showed a structural change trapped in the ATP hydrolysis transition state, because direct contact between peptide and CL1 is abolished. By cysteine scanning, the most conserved residues within CL1 were identified, which disrupted the tight coupling between peptide binding and transport. Together with Val-288, these residues are essential in sensing the bound peptide and inter-domain signal transmission. To characterize the molecular architecture of CL1, a convenient and minimally perturbing approach was used, which combined cysteine substitution in the CL1 region and determination of accessibility to thiol specific compounds with different properties. These studies revealed that the N-terminal region of CL1 has a good accessibility for hydrophilic (iodoacetamidofluorescein, IAF) and amphiphilic probes (BODIPY maleimide, BM), whereas the C-terminal region is accessible for hydrophobic probe (coumarin maleimide, CM). Kinetic studies of fluorescence labeling suggest that this region displayed a different accessibility to probes when the protein undergoes distinct conformations (e. g. nucleotide free state), thereby reflecting conformational transitions. Fluorescence labeling with BM induces a lost of peptide transport, whereas the peptide binding remains unaffected. These results indicate that covalent modifications of the CL1 residues influenced the inter-domain communication between transmembrane domain (TMD) and NBD. The X-loop is a recently discovered motif in the NBD of ABC exporters, which stays in close contact to the CLs. Moreover, because the X-loop precedes the ABC signature motif, it probably responds to ATP binding and hydrolysis and may transmit conformational changes to the CLs. By substitution of the highly conserved Glu-602 of TAP2 with residues that have different chemical properties, it was shown for the first time that the X-loop is a functional important element, which plays an key role in coupling substrate binding to downstream events in the transport cycle. We further verified domain swapping in the TAP complex by cysteine cross-linking. The TAP complex can be reversibly arrested either in a binding or translocation incompetent state by cross-linking of the X-loop to CL1 or CL2, respectively. These results resolve the structural arrangement of the transmission interface and point to different functions of the cytosolic loops in substrate recognition, signaling and transport.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Giani OanceaGND
Referee:Robert TampéORCiDGND, Bernd LudwigGND
Advisor:Robert Tampé
Document Type:Doctoral Thesis
Year of Completion:2008
Year of first Publication:2008
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2009/03/25
Release Date:2009/03/27
Page Number:156
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht