Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 23 von 30
Zurück zur Trefferliste

Transport coefficients in the hadronic medium

  • In this work we provided additional insights into our understanding of bulk QCD matter through the study of the transport coeffcients which govern the non-equilibrium microscopical processes of statistical ensembles. Specically, we focused on the low energy regime corresponding to the hadron gas, as the properties of this region of the phase diagram are still relatively unknown, and existing calculations for the transport coeffcients are either scarce, contradictory, or somewhat limited in scope; this thesis' main goal was thus to shed some light on this by providing new independent calculations of these quantities. We subsequently presented two formalisms which can be used to calculate transport coeffcients. The first one (which also was the main tool we used in the following chapters to produce our results) relies on the development of so-called Green-Kubo formulas, which relate non-equilibrium dissipative fluctuations with transport coeffcients; notably, the off-diagonal components of the energy-momentum tensor are shown to be related to the shear viscosity, its diagonal components to the bulk viscosity and fluctuations in the electric current can be related to the electric conductivity. We additionally introduced two new conductivities, namely the baryon-electric and strange electric conductivities, which we dubbed, together with the already known electric one, the "cross-conductivity", which encodes information about how electric fluctuations are correlated to changes in electric, baryonic or strange currents, or vice-versa. The second way of calculating transport coeffcient which we discussed consists in linearizing the collision term of the Boltzmann equation through the Chapman-Enskog formalism. While in principle providing direct semi-analytical results for the transport coeffcients, this approach is complicated to implement when more than a few species are considered, and as such was then mostly used as a tool to calibrate our Green-Kubo calculations. The hadron gas model that we used for all calculations, namely the transport approach SMASH, was then presented. The main features of the model were explained, such as the collision criterion, the considered degrees of freedom and the specific way in which they microscopically interact with each other. It was verified that SMASH does reproduce analytical results of the Boltzmann equation in an expanding universe scenario, thus showing the equivalence of this transport approach and the associated kinetic theory results. A special care was taken to detail the ways in which a state of thermal and chemical equilibrium (which is necessary for Green-Kubo relations to be valid) can be reached and described using SMASH. ...

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Jean-Bernard RoseORCiDGND
URN:urn:nbn:de:hebis:30:3-528302
Verlagsort:Frankfurt am Main
Gutachter*in:Hannah ElfnerORCiDGND, Marcus BleicherORCiDGND
Betreuer:Hannah Elfner
Dokumentart:Dissertation
Sprache:Englisch
Datum der Veröffentlichung (online):23.01.2020
Jahr der Erstveröffentlichung:2019
Veröffentlichende Institution:Universitätsbibliothek Johann Christian Senckenberg
Titel verleihende Institution:Johann Wolfgang Goethe-Universität
Datum der Abschlussprüfung:20.12.2019
Datum der Freischaltung:23.01.2020
Seitenzahl:143
HeBIS-PPN:457992697
Institute:Physik
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Lizenz (Deutsch):License LogoDeutsches Urheberrecht