Live-cell protein labelling with nanometre precision by cell squeezing

  • Live-cell labelling techniques to visualize proteins with minimal disturbance are important; however, the currently available methods are limited in their labelling efficiency, specificity and cell permeability. We describe high-throughput protein labelling facilitated by minimalistic probes delivered to mammalian cells by microfluidic cell squeezing. High-affinity and target-specific tracing of proteins in various subcellular compartments is demonstrated, culminating in photoinduced labelling within live cells. Both the fine-tuned delivery of subnanomolar concentrations and the minimal size of the probe allow for live-cell super-resolution imaging with very low background and nanometre precision. This method is fast in probe delivery (∼1,000,000 cells per second), versatile across cell types and can be readily transferred to a multitude of proteins. Moreover, the technique succeeds in combination with well-established methods to gain multiplexed labelling and has demonstrated potential to precisely trace target proteins, in live mammalian cells, by super-resolution microscopy.

Download full text files

Export metadata

Author:Alina Kollmannsperger, Armon Sharei, Anika Raulf, Mike HeilemannORCiDGND, Robert Langer, Klavs F. Jensen, Ralph WienekeORCiDGND, Robert TampéORCiDGND
Pubmed Id:
Parent Title (English):Nature Communications
Publisher:Nature Publishing Group UK
Place of publication:[London]
Document Type:Article
Year of Completion:2016
Date of first Publication:2016/01/29
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2019/07/22
Tag:Cell biology; Cytological techniques
Issue:Art. 10372
Page Number:7
First Page:1
Last Page:7
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Exzellenzcluster / Exzellenzcluster Makromolekulare Komplexe
Wissenschaftliche Zentren und koordinierte Programme / Sonderforschungsbereiche / Forschungskollegs
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Licence (German):License LogoCreative Commons - Namensnennung 4.0