Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 9 von 22
Zurück zur Trefferliste

Understanding topological phases of matter with statistical methods

  • Topological phases set themselves apart from other phases since they cannot be understood in terms of the usual Landau theory of phase transitions. This fact, which is a consequence of the property that topological phase transitions can occur without breaking symmetries, is reflected in the complicated form of topological order parameters. While the mathematical classification of phases through homotopy theory is known, an intuition for the relation between phase transitions and changes to the physical system is largely inhibited by the general complexity. In this thesis we aim to get back some of this intuition by studying the properties of the Chern number (a topological order parameter) in two scenarios. First, we investigate the effect of electronic correlations on topological phases in the Green's function formalism. By developing a statistical method that averages over all possible solutions of the manybody problem, we extract general statements about the shape of the phase diagram and investigate the stability of topological phases with respect to interactions. In addition, we find that in many topological models the local approximation, which is part of many standard methods for solving the manybody lattice model, is able to produce qualitatively correct phase transitions at low to intermediate correlations. We then extend the statistical method to study the effect of the lattice, where we evaluate possible applications of standard machine learning techniques against our information theoretical approach. We define a measure for the information about particular topological phases encoded in individual lattice parameters, which allows us to construct a qualitative phase diagram that gives a more intuitive understanding of the topological phase. Finally, we discuss possible applications of our method that could facilitate the discovery of new materials with topological properties.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Thomas MertzORCiDGND
URN:urn:nbn:de:hebis:30:3-671796
DOI:https://doi.org/10.21248/gups.67179
Verlagsort:Frankfurt am Main
Gutachter*in:Roser ValentíORCiDGND, Falko PientkaORCiD
Dokumentart:Dissertation
Sprache:Englisch
Datum der Veröffentlichung (online):03.01.2022
Jahr der Erstveröffentlichung:2021
Veröffentlichende Institution:Universitätsbibliothek Johann Christian Senckenberg
Titel verleihende Institution:Johann Wolfgang Goethe-Universität
Datum der Abschlussprüfung:02.07.2022
Datum der Freischaltung:08.04.2022
Seitenzahl:278
HeBIS-PPN:492851557
Institute:Physik
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Lizenz (Deutsch):License LogoDeutsches Urheberrecht