Refine
Document Type
- Preprint (15)
- Article (2)
- diplomthesis (1)
- Report (1)
Has Fulltext
- yes (19)
Is part of the Bibliography
- no (19)
Keywords
Institute
Im Verlauf dieser Arbeit zeigte sich, daß es möglich ist, Spuren von Teilchen, die zwei Detektoren durchquerten, einander zuzuordnen; dies mit um so größerer Sicherheit, je kleiner die Spurdichte war. Anhand eines systematischen Vergleichs von Spurparametern zugeordneter Spuren gelang es, die Position eines Spurdetektors (TPC) relativ zum zweiten Detektor und dem Target genau zu bestimmen. Die Bedeutung dieser Position ist allerdings nicht eindeutig, da eine fehlerhafte, ortsabhängige Verzerrungskorrektur der TPC Meßdaten ebenfalls zu systematischen Verschiebungen und Verdrehungen der TPC führen kann. Letztlich ist es sogar möglich, daß die Position der TPC besser vermessen wurde als die der Streamerkammer, da auch die Messmarken - die fiducials - die den Bezug zwischen der Streamerkammer und den Magnetkoordinaten herstellen - , der schlechten Rekonstruktionsgenauigkeit der z-Komponente in der Streamerkammer unterliegen. Die Kenntnis der exakten Position der TPC ist deshalb notwendig, da die TPC alleine keine Impulsinformation liefert, sondern der Teilchenimpuls erst mit Hilfe der genau bekannten Vertexposition und dem gemessenen Magnetfeld möglich ist. Es zeigte sich, daß diese ermittelten Positionen unerläßlich für eine konsistente Impulsbestimmung beider Detektoren sind. Wie zu erwarten, ist das Transversalimpulsspektrum empfindlich auf die Position des TPC-Detektors. Durch Variation möglicher Positionen um die gefundene wurde eine Abschätzung des systematischen Fehlers in pT erreicht. Dieser kann 20% erreichen. Im folgenden Experiment - NA49 - werden sich zwei Vertex-TPC's hintereinander in einem inhomogenen Magnetfeld befinden. Dahinter und außerhalb des Magnetfeldes stehen nebeneinander zwei Haupt-TPC's. Da zur Messung des Magnetfeldes die Vertex-TPC's vollständig aus den Magneten entfernt werden, ist die Findung des Bezugs zwischen den Magnetkoordinaten und denen der Vertex-TPC's ein Problem zukünftiger Datenanalysen. Außerdem wird die relative Position der Haupt-TPC's zu den Magneten benötigt, um den funktionalen Zusammenhang zwischen der Ablenkung durch die Magneten und dem Impuls der Spur zu bestimmen, da in den Haupt-TPC's kein Magnetfeld die Spuren krümmt. Anderenfalls wäre auch hier keine konsistente Impulsbestimmung möglich.
The extension of the Periodic System into hitherto unexplored domains - anti- matter and hypermatter - is discussed. Starting from an analysis of hyperon and single hypernuclear properties we investigate the structure of multi-hyperon objects (MEMOs) using an extended relativistic meson field theory. These are contrasted with multi-strange quark states (strangelets). Their production mechanism is stud- ied for relativistic collisions of heavy ions from present day experiments at AGS and SPS to future opportunities at RHIC and LHC. It is pointed out that abso- lutely stable hypermatter is unlikely to be produced in heavy ion collisions. New attention should be focused on short lived metastable hyperclusters ( / 10 10s) and on intensity interferometry of multi-strange-baryon correlations.
Nonequilibrium models (three-fluid hydrodynamics, UrQMD, and quark molecular dynamics) are used to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions from the SPS via RHIC to LHC. It is demonstrated that these models - although they do treat the most interesting early phase of the collisions quite differently (thermalizing QGP vs. coherent color fields with virtual particles) -- all yield a reasonable agreement with a large variety of the available heavy ion data. Hadron/hyperon yields, including J/Psi meson production/suppression, strange matter formation, dileptons, and directed flow (bounce-off and squeeze-out) are investigated. Observations of interesting phenomena in dense matter are reported. However, we emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data. The role of future experiments with the STAR and ALICE detectors is pointed out.
Noneequilibrium models (three-fluid hydrodynamics and UrQMD) use to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that these two models - although they do treat the most interesting early phase of the collisions quite differently(thermalizing QGP vs. coherent color fields with virtual particles) - both yields a reasonable agreement with a large variety of the available heavy ion data.
Microscopic calculations of central collisions between heavy nuclei are used to study fragment production and the creation of collective flow. It is shown that the final phase space distributions are compatible with the expectations from a thermally equilibrated source, which in addition exhibits a collective transverse expansion. However, the microscopic analyses of the transient states in the reaction stages of highest density and during the expansion show that the system does not reach global equilibrium. Even if a considerable amount of equilibration is assumed, the connection of the measurable final state to the macroscopic parameters, e.g. the temperature, of the transient "equilibrium" state remains ambiguous.
We study the thermodynamic properties of infinite nuclear matter with the Ultrarelativistic Quantum Molecular Dynamics (URQMD), a semiclassical transport model, running in a box with periodic boundary conditions. It appears that the energy density rises faster than T4 at high temperatures of T approx. 200 - 300 MeV. This indicates an increase in the number of degrees of freedom. Moreover, We have calculated direct photon production in Pb+Pb collisions at 160 GeV/u within this model. The direct photon slope from the microscopic calculation equals that from a hydrodynamical calculation without a phase transition in the equation of state of the photon source.
Compelling evidence for the creation of a new form of matter has been claimed to be found in Pb+Pb collisions at SPS. We discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that so far none of the proposed signals like J/psi meson production/suppression, strangeness enhancement, dileptons, and directed flow unambigiously show that a phase of deconfined matter has been formed in SPS Pb+Pb collisions. We emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data.
Entropy production in the initial compression stage of relativistic heavy-ion collisions from AGS to SPS energies is calculated within a three-fluid hydrodynamical model. The entropy per participating net baryon is found to increase smoothly and does not exhibit a jump or a plateau as in the 1-dimensional one-fluid shock model. Therefore, the excess of pions per participating net baryon in nucleus-nucleus collisions as compared to proton-proton reactions also increases smoothly with beam energy.
Impact parameter dependencies in Pb(160 AGeV)+Pb reactions : hydrodynamical vs. cascade calculations
(1999)
We investigate the impact parameter dependence of the specific entropy S/A in relativistic heavy ion collisions. Especially the anti-Lambda/anti-proton ratio is found to be a useful tool to distinguish between chemical equilibrium assumptions assumed in hydrodynamics (here: the 3-fluid model) and the chemical non-equilibrium scenario like in microscopic models as the UrQMD model.
Entropy production in the compression stage of heavy ion collisions is discussed within three distinct macroscopic models (i.e. generalized RHTA, geometrical overlap model and three-fluid hydrodynamics). We find that within these models \sim 80% or more of the experimentally observed final-state entropy is created in the early stage. It is thus likely followed by a nearly isentropic expansion. We employ an equation of state with a first-order phase transition. For low net baryon density, the entropy density exhibits a jump at the phase boundary. However, the excitation function of the specific entropy per net baryon, S/A, does not reflect this jump. This is due to the fact that for final states (of the compression) in the mixed phase, the baryon density \rho_B increases with \sqrt{s}, but not the temperature T. Calculations within the three-fluid model show that a large fraction of the entropy is produced by nuclear shockwaves in the projectile and target. With increasing beam energy, this fraction of S/A decreases. At \sqrt{s}=20 AGeV it is on the order of the entropy of the newly produced particles around midrapidity. Hadron ratios are calculated for the entropy values produced initially at beam energies from 2 to 200 AGeV.