Refine
Year of publication
Document Type
- Preprint (21)
- Article (14)
- Working Paper (2)
- Conference Proceeding (1)
Has Fulltext
- yes (38)
Is part of the Bibliography
- no (38)
Keywords
- baryon (3)
- heavy-ion collisions (3)
- Dirac (2)
- Dirac-Brueckner theory (2)
- Dirac-Brückner Theorie (2)
- High Energy Physics - Phenomenology (2)
- Kerne (2)
- Lagrangian (2)
- Nuclear Theory (2)
- QCD (2)
Nonequilibrium models (three-fluid hydrodynamics, UrQMD, and quark molecular dynamics) are used to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions from the SPS via RHIC to LHC. It is demonstrated that these models - although they do treat the most interesting early phase of the collisions quite differently (thermalizing QGP vs. coherent color fields with virtual particles) -- all yield a reasonable agreement with a large variety of the available heavy ion data. Hadron/hyperon yields, including J/Psi meson production/suppression, strange matter formation, dileptons, and directed flow (bounce-off and squeeze-out) are investigated. Observations of interesting phenomena in dense matter are reported. However, we emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data. The role of future experiments with the STAR and ALICE detectors is pointed out.
A new chiral SU(3) Lagrangian is proposed to describe the properties of kaons and anti-kaons in the nuclear medium. The saturation properties of nuclear matter are reproduced as well as the results of the Dirac-Brückner theory. After introducing the coupling between the omega meson and the kaon, our results for e ective kaon and anti-kaon energy are quite similar as calculated in the one-boson-exchange model.
A new chiral SU(3) Lagrangian is proposed to describe the properties of kaons and antikaons in the nuclear medium, the ground state of dense matter and the kaon-nuclear interactions consistently. The saturation properties of nuclear matter are reproduced as well as the results of the Dirac-Brückner theory. After taking into account the coupling between the omega meson and the kaon, we obtain similar results for the e ective kaon and antikaon energies as calculated in the one-boson-exchange model while in our model the parameters of the kaon-nuclear interactions are constrained by the SU(3) chiral symmetry. PACS number(s): 14.40.Aq, 12.39.Fe, 21.30.Fe
Gravitational waves, electromagnetic radiation, and the emission of high energy particles probe the phase structure of the equation of state of dense matter produced at the crossroad of the closely related relativistic collisions of heavy ions and of binary neutron stars mergers. 3 + 1 dimensional special- and general relativistic hydrodynamic simulation studies reveal a unique window of opportunity to observe phase transitions in compressed baryon matter by laboratory based experiments and by astrophysical multimessenger observations. The astrophysical consequences of a hadron-quark phase transition in the interior of a compact star will be focused within this article. Especially with a future detection of the post-merger gravitational wave emission emanated from a binary neutron star merger event, it would be possible to explore the phase structure of quantum chromodynamics. The astrophysical observables of a hadron-quark phase transition in a single compact star system and binary hybrid star merger scenario will be summarized within this article. The FAIR facility at GSI Helmholtzzentrum allows one to study the universe in the laboratory, and several astrophysical signatures of the quark-gluon plasma have been found in relativistic collisions of heavy ions and will be explored in future experiments.
The long-awaited detection of a gravitational wave from the merger of a binary neutron star in August 2017 (GW170817) marks the beginning of the new field of multi-messenger gravitational wave astronomy. By exploiting the extracted tidal deformations of the two neutron stars from the late inspiral phase of GW170817, it is now possible to constrain several global properties of the equation of state of neutron star matter. However, the most interesting part of the high density and temperature regime of the equation of state is solely imprinted in the post-merger gravitational wave emission from the remnant hypermassive/supramassive neutron star. This regime was not observed in GW170817, but will possibly be detected in forthcoming events within the current observing run of the LIGO/VIRGO collaboration. Numerous numerical-relativity simulations of merging neutron star binaries have been performed during the last decades, and the emitted gravitational wave profiles and the interior structure of the generated remnants have been analysed in detail. The consequences of a potential appearance of a hadron-quark phase transition in the interior region of the produced hypermassive neutron star and the evolution of its underlying matter in the phase diagram of quantum cromo dynamics will be in the focus of this article. It will be shown that the different density/temperature regions of the equation of state can be severely constrained by a measurement of the spectral properties of the emitted post-merger gravitational wave signal from a future binary compact star merger event.
The effect of a non-zero strangeness chemical potential on the strong interaction phase diagram has been studied within the framework of the SU(3) quark-hadron chiral parity-doublet model. Both, the nuclear liquid-gas and the chiral/deconfinement phase transitions are modified. The first-order line in the chiral phase transition is observed to vanish completely, with the entire phase boundary becoming a crossover. These changes in the nature of the phase transitions are expected to modify various susceptibilities, the effects of which might be detectable in particle-number distributions resulting from moderate-temperature and high-density heavy-ion collision experiments.
In this work, we discuss the dense matter equation of state (EOS) for the extreme range of conditions encountered in neutron stars and their mergers. The calculation of the properties of such an EOS involves modeling different degrees of freedom (such as nuclei, nucleons, hyperons, and quarks), taking into account different symmetries, and including finite density and temperature effects in a thermodynamically consistent manner. We begin by addressing subnuclear matter consisting of nucleons and a small admixture of light nuclei in the context of the excluded volume approach. We then turn our attention to supranuclear homogeneous matter as described by the Chiral Mean Field (CMF) formalism. Finally, we present results from realistic neutron-star-merger simulations performed using the CMF model that predict signatures for deconfinement to quark matter in gravitational wave signals.
What is the magnetic field distribution for the equation of state of magnetized neutron stars?
(2017)
In this Letter, we report a realistic calculation of the magnetic field profile for the equation of state inside strongly magnetized neutron stars. Unlike previous estimates, which are widely used in the literature, we find that magnetic fields increase relatively slowly with increasing baryon chemical potential (or baryon density) of magnetized matter. More precisely, the increase is polynomial instead of exponential, as previously assumed. Through the analysis of several different realistic models for the microscopic description of stellar matter (including hadronic, hybrid and quark models) combined with general relativistic solutions endowed with a poloidal magnetic field obtained by solving Einstein–Maxwell's field equations in a self-consistent way, we generate a phenomenological fit for the magnetic field distribution in the stellar polar direction to be used as input in microscopic calculations.
Die Nutzung der natürlichen Ressourcen ist zur Sicherung gesellschaftlichen Aktivitäten unverzichtbar, gleichwohl stehen ihrer nachhaltigen Bewirtschaftung immer neue Veränderungsprozesse und damit einhergehende Herausforderungen gegenüber. In Anbetracht von wirtschaftlichen Konzentrationsprozessen, sozio-strukturellen und demographischen Entwicklungen, technischen Innovationen, globalem Wandel und neuen Erkenntnissen zu Risiken stoßen etablierte klassische Verfahren des Planungsdenkens zunehmend an ihre Grenzen. Vor diesem Hintergrund wurden neue und innovative Ansätze zur Ressourcensicherung entwickelt, die vereinzelt auch bereits in der Praxis realisiert wurden. Sie greifen die Herausforderung gegenwärtiger Veränderungsprozesse konzeptionell auf und überführen sie in angepasste Strukturen und Verfahren. Die vorliegende Arbeit beschreibt diesen Übergang zu einem neuen, angepassten Planungsdenken. In seinem Mittelpunkt steht der Begriff der „sozial-ökologischen Ressourcenregulation“. Am Beispiel der Bewirtschaftung der Wasserressourcen werden aktuelle Entwicklungen vorgestellt und exemplarisch anhand von zwei Fallbeispielen vertieft: dem Fuhrberger Feld und dem Hessische Ried unter den spezifischen Gesichtspunkten von Wassergüte und Wassermenge. Die Entwicklungen in beiden Regionen werden zunächst anhand der Anforderungen an eine sozial-ökologische Regulation bewertet. In einem weiteren Schritt werden verallgemeinerte Schlussfolgerungen für eine verbesserte Ressourcenbewirtschaftung und deren Regulation sowohl hinsichtlich der Wassergüte als auch der Wassermenge gezogen. Es zeigt sich hierbei die große Bedeutung der Entstehung adaptiver Strukturen durch Rückkopplungen und den Einbezug der relevanten gesellschaftlichen Akteure; so ist langfristig auch eine Koexistenz von tendenziell konfligierenden Ressourcennutzungen und deren nachhaltige Entwicklung möglich.
The biological effects of energetic heavy ions are attracting increasing interest for their applications in cancer therapy and protection against space radiation. The cascade of events leading to cell death or late effects starts from stochastic energy deposition on the nanometer scale and the corresponding lesions in biological molecules, primarily DNA. We have developed experimental techniques to visualize DNA nanolesions induced by heavy ions. Nanolesions appear in cells as “streaks” which can be visualized by using different DNA repair markers. We have studied the kinetics of repair of these “streaks” also with respect to the chromatin conformation. Initial steps in the modeling of the energy deposition patterns at the micrometer and nanometer scale were made with MCHIT and TRAX models, respectively.