Refine
Is part of the Bibliography
56762 search hits
-
Molecular mechanism of autosomal recessive long QT-syndrome 1 without deafness
(2021)
-
Annemarie Oertli
Susanne Rinné
Robin Moss
Stefan Kääb
Gunnar Seemann
Britt-Maria Beckmann
Niels Decher
- KCNQ1 encodes the voltage-gated potassium (Kv) channel KCNQ1, also known as KvLQT1 or Kv7.1. Together with its ß-subunit KCNE1, also denoted as minK, this channel generates the slowly activating cardiac delayed rectifier current IKs, which is a key regulator of the heart rate dependent adaptation of the cardiac action potential duration (APD). Loss-of-function mutations in KCNQ1 cause congenital long QT1 (LQT1) syndrome, characterized by a delayed cardiac repolarization and a prolonged QT interval in the surface electrocardiogram. Autosomal dominant loss-of-function mutations in KCNQ1 result in long QT syndrome, called Romano–Ward Syndrome (RWS), while autosomal recessive mutations lead to Jervell and Lange-Nielsen syndrome (JLNS), associated with deafness. Here, we identified a homozygous KCNQ1 mutation, c.1892_1893insC (p.P631fs*20), in a patient with an isolated LQT syndrome (LQTS) without hearing loss. Nevertheless, the inheritance trait is autosomal recessive, with heterozygous family members being asymptomatic. The results of the electrophysiological characterization of the mutant, using voltage-clamp recordings in Xenopus laevis oocytes, are in agreement with an autosomal recessive disorder, since the IKs reduction was only observed in homomeric mutants, but not in heteromeric IKs channel complexes containing wild-type channel subunits. We found that KCNE1 rescues the KCNQ1 loss-of-function in mutant IKs channel complexes when they contain wild-type KCNQ1 subunits, as found in the heterozygous state. Action potential modellings confirmed that the recessive c.1892_1893insC LQT1 mutation only affects the APD of homozygous mutation carriers. Thus, our study provides the molecular mechanism for an atypical autosomal recessive LQT trait that lacks hearing impairment.
-
IL-38 as a new regulator of the resolution of inflammation
(2020)
-
Arnaud Huard
- The interleukin (IL)-1 family has been described for its numerous involvement in the regulation of inflammatory processes. Certain members are able to induce inflammation, whereas others have the capacity to inhibit inflammation. The newly discovered IL-1 family member IL-38 shows interesting and innovative properties. While most of these cytokines are pro-inflammatory mediators, IL-38 appears to enter the smaller circle of anti-inflammatory mediators. As a pattern, IL-38 appears to suppress IL-17-driven chronic or auto-inflammation by working as receptor antagonist. These properties, as well as its beneficial effects in models of inflammatory and autoimmune diseases suggest the possibility of IL-38-based therapies. Nevertheless, its role in the resolution of acute inflammation, thereby preventing chronic inflammation, remains unclear.
The first part of my thesis elucidated the role of IL-38 in the resolution of inflammation. I found that the complete absence of IL-38 in IL-38 KO mice leads to a delayed resolution of inflammation in the zymosan-induced peritonitis mouse model, compared to WT mice. This was marked by a persistent neutrophilia and a lower production of pro-resolving mediators during the resolution phase, such as TGFβ1 production from macrophages following efferocytosis of apoptotic cells. Reduced TGFβ1 production from macrophages coincided with reduced levels of regulatory T cells (Tregs), which are known to promote the resolution of inflammation. Unexpectedly, the TGFβ1 production capacity of macrophages did not influence the induction of Tregs from naïve T cells. Rather, IL-38 KO mice had an accumulation of Tregs in the thymus compared to WT mice. This was caused by an impairment of CD62L expression at the surface of Tregs, which is required for Tregs migration outside of the thymus. Higher Treg numbers in the thymus correlated with lower level of Tregs in peripheral lymphoid organs. Importantly, CD62L expression at the surface of IL-38 KO Tregs in the thymus was restored by injecting IL-38 i.p. for 24h. These data indicate a potential key function of IL-38 in the regulation of Treg migration, which is triggered in many cases of autoimmunity.
The second part of my thesis was to study the role of IL-38 in experimental autoimmune encephalomyelitis (EAE) development, given that EAE is IL-17-dependent. Unexpectedly, IL-38-deficient mice showed strongly reduced clinical scores and histological markers of EAE. This came with reduced inflammatory cell infiltrates, as well as reduced expression of inflammatory markers in the spinal cord. IL-38 mRNA was detected in the spinal cord, mainly by resident and infiltrated phagocytes, but also by other cells, such as ependymal cells. IL-38 was upregulated upon pro-inflammatory stimulation of bone marrow-derived macrophages, and its presence was necessary for a complete activation of inflammatory macrophages. My data suggest an alternative cell-intrinsic role of IL-38 in macrophages to promote inflammation in the central nervous system.
In the last part of my thesis, I initiated a project on the function of IL-38 in B cell physiology and antibody production, given the fact that IL-38 is expressed by B cells. I generated preliminary data showing that the absence of IL-38 in mice decreased antibody production. Furthermore, I showed that IL-38 is particularly expressed by plasma cells in human tonsils. This project remains open and further studies will be conducted to investigate how IL-38 regulates antibody production, both in physiological and autoimmune settings. Understanding the role of IL-38 in autoantibody production could lead to original and innovative therapy for patients suffering from auto-inflammatory disease.
In summary, the different projects of my thesis provide evidence that the pro-resolving function of IL-38 may be indirectly linked to the retention of Tregs in the thymus. Moreover, a possible intracellular role of IL-38 within macrophages was described showing opposite properties in the regulation of inflammation. This function could be causatively involved in EAE development. However, further studies remain to be done to find the mechanism of action by which IL-38 regulates Tregs egression and how it influences the EAE development. Complete understanding of the IL-38 biology and differentiation between its extra- vs potential intracellular functions could make it a promising therapeutic target for chronic inflammatory or autoimmune diseases.
-
Understanding the biosynthesis of fabclavines in entomopathogenic bacteria
(2020)
-
Sebastian Wenski
- The compound class of the fabclavines was described as secondary or specialized metabolites (SM) for Xenorhabdus budapestensis and X. szentirmaii. Their corresponding structure was elucidated by NMR and further derivatives could be identified in both strains. Biochemically, fabclavines are hybrid SMs derived from two non-ribosomal-peptide-synthetases (NRPS), one type I polyketide-synthase (PKS) and polyunsaturated fatty acid (PUFA) synthases. In detail, a hexapeptide is connected via partially reduced polyketide units to an unsual polyamine. Structurally, they are related to the (pre-)zeamines, described for Serratia plymuthica and Dickeya zeae. Fabclavines exhibit a broad-spectrum bioactivity against a variety of different organisms like Grampositive and Gram-negative bacteria, fungi, protozoa but also against eukaryotic celllines.
In this work, the fabclavine biosynthesis was elucidated and assigned to two independently working assembly lines. The NRPS-PKS-pathway is initiated by the first NRPS FclI via generation of a tetrapeptide, which is elongated by the second NRPS FclJ, leading to a hexapeptide. Alternatively, FclJ can also act as direct start of the biosynthesis, resulting in the final formation of shortened fabclavine derivatives with a diinstead of a hexapeptide. In both cases, the peptide moiety is transferred to the iterative type I PKS FclK, leading to an elongation with partially reduced polyketide units. The resulting NRPS-PKS-intermediate is still enzyme-bound. The PUFA-homologues FclC, FclD and FclE in combination with FclF, FclG and FclH belong to the polyamine-forming pathway. Briefly, repeating decarboxylative Claisen thioester condensation reactions of acyl-coenzym A building blocks lead to the generation of an acyl chain in a PKS- or fatty acid biosynthesis-like manner. The corresponding β-keto-groups are either completely reduced or transaminated in a specific and repetitive way, resulting in the concatenation of so-called amine-units. The final β-keto-group is reduced to a hydroxy-group and the intermediate is reductively released by the thioester reductase FclG. A subsequent transamination step leads to the final polyamine. The NRPS-PKS- as well as the polyamine-pathway are connected by FclL. This condensation domain-like protein catalyzes the condensation of the polyamine with the NRPS-PKS-part, which results in the release of the final fabclavine. The results are described in detail in the first publication (first author).
Fabclavine biosynthesis gene cluster (BGC) are widely spread among the genus Xenorhabdus and Photorhabdus. In Xenorhabdus strains a high degree of conservation regarding the BGC synteny as well as the identity of single proteins can be observed. However, Photorhabdus strains harbor only the PUFA-homologues. While in Photorhabdus no product could be detected, our analysis revealed that the Xenorhabdus strains produce a large chemical diversity of different derivatives. Briefly, the general backbone of the fabclavines is conserved and only four chemical moieties are variable: The second and last amino acids of the NRPS-part, the number of incorporated polyketide units as well as the number of amine units in the polyamine. In combination with the elucidated biosynthesis, these variables could be assigned to single biosynthesis components as diversity mechanisms. Together with the 10 already described derivatives, a total of 32 derivatives could be detected. Interestingly, except for taxonomic closely related strains, all analyzed strains produce their own set of derivatives. Finally, we could confirm that the fabclavines are the major bioactive compound class in the analyzed strains under laboratory conditions. The results are described in detail in the second publication (first author).
Together with our collaboration partner Prof. Selcuk Hazir a potent bioactivity against Enterococcus faecalis, which is associated with endodontic infections, could be contributed to X. cabanillasii. Here, we could confirm that this bioactivity can be assigned to the fabclavines. The results are described in detail in the third publication(co-author).
Among the genus Xenorhabdus, X. bovienii represents an exception as its NRPS and PKS genes of the fabclavine BGC are missing or truncated, resulting in the exclusive production of polyamines. Furthermore, its PUFA-homologue FclC harbors an additional dehydratase (DH) domain. Upon extensive analysis a yet unknown deoxy-polyamine was identified and assigned to this additional domain. Finally, the DH domain was transferred into other polyamine pathways. Regardless of an in cis or in trans integration, the chimeric pathways produced deoxy-derivatives of its naturally occurring polyamines, suggesting that this represents another diversification mechanism. The results are described in detail in the attached manuscript (first author).
-
Post- und Fernmeldewesen des Vereinigten Wirtschaftsgebietes : Bezirksstatistik für das Rechnungsjahr 1947 (mit Vergleichszahlen für 1946, 1943, 1938, 1933 u. 1928) / zusammengestellt durch das Post- und Fernmeldetechnische Zentralamt Frankfurt, (Main)
(1948)
-
Mittheilungen des Deutschen Vereins gegen den Misbrauch geistiger Getränke. Nr. 2, 10. Februar 1884
(1884)
-
Mittheilungen des Deutschen Vereins gegen den Misbrauch geistiger Getränke. Nr. 1, 13. Januar 1884
(1884)
-
Comprehensive set of tertiary complex structures and palmitic acid binding provide molecular insights into ligand design for RXR isoforms
(2020)
-
Apirat Chaikuad
Julius Pollinger
Michael Rühl
Xiaomin Ni
Whitney Kilu
Jan Heering
Daniel Merk
- The retinoid X receptor (RXR) is a ligand-sensing transcription factor acting mainly as a universal heterodimer partner for other nuclear receptors. Despite presenting as a potential therapeutic target for cancer and neurodegeneration, adverse effects typically observed for RXR agonists, likely due to the lack of isoform selectivity, limit chemotherapeutic application of currently available RXR ligands. The three human RXR isoforms exhibit different expression patterns; however, they share high sequence similarity, presenting a major obstacle toward the development of subtype-selective ligands. Here, we report the discovery of the saturated fatty acid, palmitic acid, as an RXR ligand and disclose a uniform set of crystal structures of all three RXR isoforms in an active conformation induced by palmitic acid. A structural comparison revealed subtle differences among the RXR subtypes. We also observed an ability of palmitic acid as well as myristic acid and stearic acid to induce recruitment of steroid receptor co-activator 1 to the RXR ligand-binding domain with low micromolar potencies. With the high, millimolar endogenous concentrations of these highly abundant lipids, our results suggest their potential involvement in RXR signaling.
-
Jahresbericht 2004 / Kommunale Ausländer- und Ausländerinnenvertretung (KAV) : III. Wahlperiode
(2004)
-
Jahresbericht 2003 / Kommunale Ausländer- und Ausländerinnenvertretung (KAV) : III. Wahlperiode
(2003)
-
Jahresbericht 2002 / Kommunale Ausländer- und Ausländerinnenvertretung (KAV) : III. Wahlperiode
(2002)