• search hit 2 of 292
Back to Result List

A prior-based approach for hypothesis comparison and its utility to discern among temporal scenarios of divergence

  • One of the major problems in evolutionary biology is to elucidate the relationships between historical events and the tempo and mode of lineage divergence. The development of relaxed molecular clock models and the increasing availability of DNA sequences resulted in more accurate estimations of taxa divergence times. However, finding the link between competing historical events and divergence is still challenging. Here we investigate assigning constrained-age priors to nodes of interest in a time-calibrated phylogeny as a means of hypothesis comparison. These priors are equivalent to historic scenarios for lineage origin. The hypothesis that best explains the data can be selected by comparing the likelihood values of the competing hypotheses, modelled with different priors. A simulation approach was taken to evaluate the performance of the prior-based method and to compare it with an unconstrained approach. We explored the effect of DNA sequence length and the temporal placement and span of competing hypotheses (i.e. historic scenarios) on selection of the correct hypothesis and the strength of the inference. Competing hypotheses were compared applying a posterior simulation analogue of the Akaike Information Criterion and Bayes factors (obtained after calculation of the marginal likelihood with three estimators: Harmonic Mean, Stepping Stone and Path Sampling). We illustrate the potential application of the prior-based method on an empirical data set to compare competing geological hypotheses explaining the biogeographic patterns in Pleurodeles newts. The correct hypothesis was selected on average 89% times. The best performance was observed with DNA sequence length of 3500-10000 bp. The prior-based method is most reliable when the hypotheses compared are not temporally too close. The strongest inferences were obtained when using the Stepping Stone and Path Sampling estimators. The prior-based approach proved effective in discriminating between competing hypotheses when used on empirical data. The unconstrained analyses performed well but it probably requires additional computational effort. Researchers applying this approach should rely only on inferences with moderate to strong support. The prior-based approach could be applied on biogeographical and phylogeographical studies where robust methods for historical inferences are still lacking.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Eugenia ZarzaORCiD, Robert B. O’HaraORCiD, Annette Klussmann-KolbGND, Markus PfenningerORCiDGND
URN:urn:nbn:de:hebis:30:3-724672
DOI:https://doi.org/10.1101/302539
Parent Title (English):bioRxiv
Document Type:Preprint
Language:English
Date of Publication (online):2018/04/17
Date of first Publication:2018/04/17
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2023/06/01
Issue:302539
Page Number:34
Institutes:Angeschlossene und kooperierende Institutionen / Senckenbergische Naturforschende Gesellschaft
Fachübergreifende Einrichtungen / Biodiversität und Klima Forschungszentrum (BiK-F)
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Sondersammelgebiets-Volltexte
Licence (German):License LogoCreative Commons - CC BY-NC-ND - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International