Detection of follicular regions in actin-stained whole slide images of the human lymph node by shock filter

  • Human lymph nodes play a central part of immune defense against infection agents and tumor cells. Lymphoid follicles are compartments of the lymph node which are spherical, mainly filled with B cells. B cells are cellular components of the adaptive immune systems. In the course of a specific immune response, lymphoid follicles pass different morphological differentiation stages. The morphology and the spatial distribution of lymphoid follicles can be sometimes associated to a particular causative agent and development stage of a disease. We report our new approach for the automatic detection of follicular regions in histological whole slide images of tissue sections immuno-stained with actin. The method is divided in two phases: (1) shock filter-based detection of transition points and (2) segmentation of follicular regions. Follicular regions in 10 whole slide images were manually annotated by visual inspection, and sample surveys were conducted by an expert pathologist. The results of our method were validated by comparing with the manual annotation. On average, we could achieve a Zijbendos similarity index of 0.71, with a standard deviation of 0.07.

Download full text files

Export metadata

Metadaten
Author:Patrick WurzelORCiD, Jörg AckermannORCiDGND, Hendrik SchäferGND, Sonja ScharfORCiDGND, Martin-Leo HansmannGND, Ina KochORCiD
URN:urn:nbn:de:hebis:30:3-628281
DOI:https://doi.org/10.1515/hsz-2020-0178
ISSN:1437-4315
Parent Title (English):Biological chemistry
Publisher:de Gruyter
Place of publication:Berlin [u.a.]
Document Type:Article
Language:English
Date of Publication (online):2020/12/24
Date of first Publication:2020/12/24
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2023/04/26
Tag:computer vision; digital pathology; human lymph node; morphological filtering; shock filter; whole slide image
Volume:402
Issue:8
Page Number:9
First Page:991
Last Page:999
Note:
The implementation is available under the following link: https://sourceforge.net/projects/fldetect/.
Note:
This investigation was supported by the Wilhelm Sander Stiftung No. 2018.101.1, BMBF, COMPLS2-087, Patho234.
HeBIS-PPN:508545722
Institutes:Informatik und Mathematik / Informatik
Medizin / Medizin
Wissenschaftliche Zentren und koordinierte Programme / Frankfurt Institute for Advanced Studies (FIAS)
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 4.0