Larval superiority of Culex pipiens to Aedes albopictus in a replacement series experiment : prospects for coexistence in Germany

  • Background: The Asian tiger mosquito Aedes albopictus is an extremely invasive, globally distributed and medically important vector of various human and veterinary pathogens. In Germany, where this species was recently introduced, its establishment may become modulated by interspecific competition from autochthonous mosquito species, especially Culex pipiens (s.l.). While competitive superiority of Ae. albopictus to Cx. pipiens (s.l.) has been described elsewhere, it has not been assessed in the epidemiological conditions of Germany. The present study aimed to determine if such superiority exists under the physicochemical and microclimatic conditions typical for container habitats in Germany. Methods: In a replacement series experiment, the larval and pupal responses of Ae. albopictus and Cx. pipiens (s.l.) (mortality, development time, growth) to interspecific interaction (five larval ratios) at (sub-)optimal temperatures (15, 20 and 25 °C) and differing food supply (3 and 6 mg animal-based food larva-1) were investigated using a randomized split-plot design. In addition to physicochemical measurements of the test media, natural physicochemical conditions were determined for comparative analyses in mosquito breeding sites across the Rhine-Main metropolitan region of Germany. Results: Under the physicochemical and microclimatic conditions similar to the breeding sites of the Rhine-Main region, competitive superiority of Cx. pipiens (s.l.) to Ae. albopictus in terms of larval survival was more frequently observed than balanced coexistence. Food regime and multifactorial interactions, but not temperature alone, were controlling factors for interspecific competition. Larval food regime and the larval ratio of Ae. albopictus influenced the physicochemistry and algal growth at 15 °C, with increased Ae. albopictus mortality linked to a decreasing number of Scenedesmus, Oocystis and Anabaena algae. Conclusions: Under the present environmental conditions, the spread of Ae. albopictus from isolated foci in Germany may generally be slowed by biotic interactions with the ubiquitous Cx. pipiens (s.l.) (and potentially other container-breeding mosquito species) and by limnic microalgae in microhabitats with high resource levels. Detailed knowledge of the context dependency in temperate mosquito ecology, and interrelations of physicochemistry and phycology may help to achieve a better understanding of the upcoming Ae. albopictus colonization processes in central and northern Europe.
Metadaten
Author:Ruth MüllerORCiD, Timm Knautz, Simone Vollroth, Robert Berger, Aljoscha Kreß, Friederike Reuß, Jan David Alexander GronebergORCiDGND, Ulrich KuchORCiDGND
URN:urn:nbn:de:hebis:30:3-463873
DOI:https://doi.org/10.1186/s13071-018-2665-3
ISSN:1756-3305
Pubmed Id:https://pubmed.ncbi.nlm.nih.gov/29394910
Parent Title (English):Parasites & vectors
Publisher:BioMed Central
Place of publication:London
Document Type:Article
Language:English
Year of Completion:2018
Date of first Publication:2018/02/02
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2018/05/15
Tag:Interspecific competition; Microalgae; Niche differentiation; Resource competition; Water chemistry
Volume:11
Issue:1, Art. 80
Page Number:16
First Page:1
Last Page:16
Note:
© The Author(s). 2018 Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
HeBIS-PPN:434443344
Institutes:Medizin / Medizin
Angeschlossene und kooperierende Institutionen / Senckenbergische Naturforschende Gesellschaft
Biowissenschaften / Institut für Ökologie, Evolution und Diversität
Fachübergreifende Einrichtungen / Biodiversität und Klima Forschungszentrum (BiK-F)
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Open-Access-Publikationsfonds:Medizin
Licence (German):License LogoCreative Commons - Namensnennung 4.0